Photobleaching of phthalocyanines in the complex with colloidal quantum dots
Abstract
About the Authors
D. A. GvozdevRussian Federation
Department of Biophysics, School of Biology,
Leninskiye gory 1–12, Moscow, 119234
E. G. Maksimov
Russian Federation
Department of Biophysics, School of Biology,
Leninskiye gory 1–12, Moscow, 119234
V. Z. Paschenko
Russian Federation
Department of Biophysics, School of Biology,
Leninskiye gory 1–12, Moscow, 119234
References
1. De Annunzio S.R., Costa N.C.S., Mezzina R.D., Graminha M.A.S., Fontana C.R. Chlorin, phthalocyanine, and porphyrin types derivatives in phototreatment of cutaneous manifestations: A review // Int. J. Mol. Sci. 2019. Vol. 20. N 16: 3861.
2. Ghorbani J., Rahban D., Aghamiri S., Teymouri A., Bahador A. Photosensitizers in antibacterial photodynamic therapy: An overview // Laser Ther. 2018. Vol. 27. N 4. P. 293–302.
3. Martinez De Pinillos Bayona A., Mroz P., Thunshelle C., Hamblin M.R. Design features for optimization of tetrapyrrole macrocycles as antimicrobial and anticancer photosensitizers // Chem. Biol. Drug Des. 2017. Vol. 89. N 2. P. 192–206.
4. Bechet D., Couleaud P., Frochot C., Viriot M.L., Guillemin F., Barberi-Heyob M. Nanoparticles as vehicles for delivery of photodynamic therapy agents // Trends Biotechnol. 2008. Vol. 26. N 11. P. 612–621.
5. Samia A.C.S., Dayal S., Burda C. Quantum dotbased energy transfer: perspectives and potential for applications in photodynamic therapy // Photochem. Photobiol. 2006. Vol. 82. N 3. P. 617–625.
6. Kraljic I., Moshni S.E. A new method for the detection of singlet oxygen in aqueous solutions // Photochem. Photobiol. 1978. Vol. 28. P. 577–581.
7. Gvozdev D.A., Maksimov E.G., Strakhovskaya M.G., Ivanov M. V., Paschenko V.Z., Rubin A.B. The effect of ionic strength on spectral properties of quantum dots and aluminum phthalocyanine complexes // Nanotechnol. Russ. 2017. Vol. 12. N 1–2. P. 73–85.
8. Kuznetsova N.A., Makarov D.A., Yuzhakova O.A., Solovieva L.I., Kaliya O.L. Study on the photostability of water-soluble Zn (II) and Al (III) phthalocyanines in aqueous solution // J. Porphyr. Phthalocyanines. 2010. Vol. 14. N 11. P. 968–974.
9. Krasnovsky А.А. Jr. Singlet molecular oxygen in photobiochemical systems: IR phosphorescnence studies // Membr. Cell Biol. 1998. Vol. 12. N 5. P. 665–690.
10. Zaitseva S.V., Zdanovich S.A., Koifman O.I. Coordination properties of (chloro)aluminum-5,15-Diphenyloctaalkylporphyrin in the reactions with small organic molecules // Russ. J. Coord. Chem. 2010. Vol. 36. N 5. P. 323–329.
11. Gvozdev D.A., Maksimov E.G., Strakhovskaya M.G., Moysenovich A.M., Ramonova A.A., Moisenovich M.M., Goryachev S.N., Paschenko V.Z., Rubin A.B. A CdSe/ZnS quantum dot-based platform for the delivery of aluminum phthalocyanines to bacterial cells // J. Photochem. Photobiol. B, Biol. 2018. Vol. 187. P. 170–179.
12. Martynenko I.V., Orlova A.O., Maslov V.G., Fedorov A.V., Berwick K., Baranov A.V. The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes // Beilstein J. Nanotechnol. 2016. Vol. 7. N 1. P. 1018–1027.
Review
For citations:
Gvozdev D.A., Maksimov E.G., Paschenko V.Z. Photobleaching of phthalocyanines in the complex with colloidal quantum dots. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(1):9-14. (In Russ.)