Lipotransfection of miR-1-3p, miR-133a-3p and miR-153-3p changes the electrophysiological characteristics of rat working myocardium
Abstract
About the Authors
V. S. KuzminRussian Federation
Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;
Ostrovitianov str. 1, Moscow, 117997
A. D. Ivanova
Russian Federation
Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234
K. B. Pustovit
Russian Federation
Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;
Ostrovitianov str. 1, Moscow, 117997
D. V. Abramochkin
Russian Federation
Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;
Ostrovitianov str. 1, Moscow, 117997
References
1. Romaine S.P.R., Tomaszewski M., Condorelli G., Samani N.J. MicroRNAs in cardiovascular disease: an introduction for clinicians // Heart. 2015. Vol. 101. N 12. P. 921–928.
2. D’Souza A., Pearman C.M., Wang Y., et al. Targeting miR-423-5p Reverses exercise training-induced hcn4 channel remodeling and sinus bradycardia // Circ. Res. 2017. Vol. 121. N 9. P. 1058–1068.
3. Yan B., Wang H., Tan Y., Fu W. microRNAs in cardiovascular disease: small molecules but big roles // Curr. Top. Med. Chem. 2019. Vol. 19. N 21. P. 1918–1947.
4. Koroleva I.A., Nazarenko M.S., Kucher A.N. Role of microRNA in development of instability of atherosclerotic plaques // Biochem. 2017. Vol. 82. N 11. P. 1380–1390.
5. Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе // Кардиол. 2017. Т. 57. № 9. С. 65–76.
6. Baulina N., Osmak G., Kiselev I., Matveeva N., Kukava N., Shakhnovich R., Kulakova O., Favorova O. NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network // J. Mol. Cell. Cardiol. 2018. Vol. 121. P. 173–179.
7. Cheng W.L., Kao Y.H., Chao T.F, Lin Y.K., Chen S.A., Chen Y.J. MicroRNA-133 suppresses ZFHX3- dependent atrial remodelling and arrhythmia // Acta Physiol. 2019. Vol. 227. N 3: e13322.
8. Girmatsion Z., Biliczki P., Bonauer A., WimmerGreinecker G., Scherer M., Moritz A., Bukowska A., Goette A., Nattel S., Hohnloser S.H., Ehrlich J.R. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation // Heart Rhythm. 2009. Vol. 6. N 12. P.1802–1809.
9. Terentyev D., Belevych A. E., Terentyeva R., Martin M.M., Malana G.E., Kuhn D.E. Abdellatif M., Feldman D.S., Elton T.S., Györke S. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 alpha and causing CaMKII-dependent hyperphosphorylation of RyR2 // Circ. Res. 2009. Vol. 104. N 4. P. 514–521.
10. Kumarswamy R., Lyon A.R., Volkmann I., Mills A.M., Bretthauer J, Pahuja A., Geers-Knörr C., Kraft T., Hajjar R.J., Macleod K.T., Harding S.E., Thum T. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway // Eur. Heart. J. 2012. Vol. 33. N 9. P. 1067–1075.
11. Condorelli G., Latronico M.V.G., Dorn G.W. 2nd. microRNAs in heart disease: putative novel therapeutic targets? // Eur. Heart. J. 2010. Vol. 31. N 6. P. 649–658.
12. Zou Y., Liu W., Zhang J., Xiang D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1 // Mol. Med. Rep. 2016. Vol. 14. N 1. P. 1033–1039.
13. Michell D.L., Vickers K.C. HDL and microRNA therapeutics in cardiovascular disease // Pharmacol. Ther. 2016. Vol. 168. P. 43–52.
14. Zhang Y., Wang Z., Gemeinhart R.A. Progress in microRNA delivery // J. Control Release. 2013. Vol. 172. N 3. P. 962–974.
15. Yang B.F., Lin H.X., Xiao J.N., Lu Y., Luo X., Li B., Zhang Y., Xu C., Bai Y., Wang H., Chen G., Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 // Nat. Med. 2007. Vol. 13. N 4. P. 486–491.
16. Diana Tools mirPath v.3 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://snf-515788.vm.okeanos.grnet.gr/ (дата обращения: 25.10.2019).
17. KEGG: Kyoto Encyclopedia of Genes and Genomes [Электронный ресурс]. 2019. Дата обновления: 2019. URL: https://www.genome.jp/kegg/ (дата обращения: 25.10.2019).
18. TargetScan Release 7.2 [Электронный ресурс]. 2018. Дата обновления: 2018. URL: http://www.targetscan.org/vert_72/ (дата обращения: 25.10.2019).
19. Diana Tools TarBase v.8 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex (дата обращения: 25.10.2019).
Review
For citations:
Kuzmin V.S., Ivanova A.D., Pustovit K.B., Abramochkin D.V. Lipotransfection of miR-1-3p, miR-133a-3p and miR-153-3p changes the electrophysiological characteristics of rat working myocardium. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(1):31-36. (In Russ.)