Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Lipotransfection of miR-1-3p, miR-133a-3p and miR-153-3p changes the electrophysiological characteristics of rat working myocardium

Abstract

MicroRNAs (miR) are small single-stranded ribonucleotide sequences, which regulate gene expression at the post-transcriptional level. It has been shown that some miRs play a key role in cardiovascular physiology and pathophysiology. In this work the effects of lipotransfection of miR-1-3p, miR-133a-3p and miR-153-3p on electrophysiological parameters of myocardial tissue were studied for the first time. Action potentials (AP) were recorded in multicellular Tyrode-perfused rat atria preparations after the injection of transfection mixture consisting of lipofectamine and miR-1-3p, miR-133a-3p or miR-153-3p with the usage of microelectrode technique. It was shown that treatment of myocardial tissue with transfection mixture itself leads to a prolongation of AP repolarization phase. Herewith, miR-1-3p, miR-153-3p did not cause a significant change in AP configuration within 6 hrs after the injection in tissue preparations compared to the injection of transfection mixture free of miRs. At the same time, miR-133a-3p caused a significant increase in AP duration at the level of 90% repolarization and the effect was maximal 4 hrs after transfection. Based on the bioinformatic search and analysis of possible miR-133a-3p targets, it was suggested that this miR can interact with the mRNA of a number of protein phosphatases. A suppression of protein phosphatase expression in cardiomyocytes may underlie the observed increase in AP duration under the action of miR-133a-3p due to the affection of proteins involved in calcium dynamics.

About the Authors

V. S. Kuzmin
Lomonosov Moscow State University; Department of Physiology, Pirogov Russian National Research Medical University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;

Ostrovitianov str. 1, Moscow, 117997



A. D. Ivanova
Lomonosov Moscow State University; Department of Physiology, Pirogov Russian National Research Medical University
Russian Federation
Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234


K. B. Pustovit
Lomonosov Moscow State University; Department of Physiology, Pirogov Russian National Research Medical University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;

Ostrovitianov str. 1, Moscow, 117997



D. V. Abramochkin
Lomonosov Moscow State University
Russian Federation

Department of Human and Animal Physiology, Faculty of Biology, Leninskye gory 1–12, Moscow, 119234;

Ostrovitianov str. 1, Moscow, 117997



References

1. Romaine S.P.R., Tomaszewski M., Condorelli G., Samani N.J. MicroRNAs in cardiovascular disease: an introduction for clinicians // Heart. 2015. Vol. 101. N 12. P. 921–928.

2. D’Souza A., Pearman C.M., Wang Y., et al. Targeting miR-423-5p Reverses exercise training-induced hcn4 channel remodeling and sinus bradycardia // Circ. Res. 2017. Vol. 121. N 9. P. 1058–1068.

3. Yan B., Wang H., Tan Y., Fu W. microRNAs in cardiovascular disease: small molecules but big roles // Curr. Top. Med. Chem. 2019. Vol. 19. N 21. P. 1918–1947.

4. Koroleva I.A., Nazarenko M.S., Kucher A.N. Role of microRNA in development of instability of atherosclerotic plaques // Biochem. 2017. Vol. 82. N 11. P. 1380–1390.

5. Кучер А.Н., Назаренко М.С. Роль микро-РНК при атерогенезе // Кардиол. 2017. Т. 57. № 9. С. 65–76.

6. Baulina N., Osmak G., Kiselev I., Matveeva N., Kukava N., Shakhnovich R., Kulakova O., Favorova O. NGS-identified circulating miR-375 as a potential regulating component of myocardial infarction associated network // J. Mol. Cell. Cardiol. 2018. Vol. 121. P. 173–179.

7. Cheng W.L., Kao Y.H., Chao T.F, Lin Y.K., Chen S.A., Chen Y.J. MicroRNA-133 suppresses ZFHX3- dependent atrial remodelling and arrhythmia // Acta Physiol. 2019. Vol. 227. N 3: e13322.

8. Girmatsion Z., Biliczki P., Bonauer A., WimmerGreinecker G., Scherer M., Moritz A., Bukowska A., Goette A., Nattel S., Hohnloser S.H., Ehrlich J.R. Changes in microRNA-1 expression and IK1 up-regulation in human atrial fibrillation // Heart Rhythm. 2009. Vol. 6. N 12. P.1802–1809.

9. Terentyev D., Belevych A. E., Terentyeva R., Martin M.M., Malana G.E., Kuhn D.E. Abdellatif M., Feldman D.S., Elton T.S., Györke S. miR-1 overexpression enhances Ca2+ release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56 alpha and causing CaMKII-dependent hyperphosphorylation of RyR2 // Circ. Res. 2009. Vol. 104. N 4. P. 514–521.

10. Kumarswamy R., Lyon A.R., Volkmann I., Mills A.M., Bretthauer J, Pahuja A., Geers-Knörr C., Kraft T., Hajjar R.J., Macleod K.T., Harding S.E., Thum T. SERCA2a gene therapy restores microRNA-1 expression in heart failure via an Akt/FoxO3A-dependent pathway // Eur. Heart. J. 2012. Vol. 33. N 9. P. 1067–1075.

11. Condorelli G., Latronico M.V.G., Dorn G.W. 2nd. microRNAs in heart disease: putative novel therapeutic targets? // Eur. Heart. J. 2010. Vol. 31. N 6. P. 649–658.

12. Zou Y., Liu W., Zhang J., Xiang D. miR-153 regulates apoptosis and autophagy of cardiomyocytes by targeting Mcl-1 // Mol. Med. Rep. 2016. Vol. 14. N 1. P. 1033–1039.

13. Michell D.L., Vickers K.C. HDL and microRNA therapeutics in cardiovascular disease // Pharmacol. Ther. 2016. Vol. 168. P. 43–52.

14. Zhang Y., Wang Z., Gemeinhart R.A. Progress in microRNA delivery // J. Control Release. 2013. Vol. 172. N 3. P. 962–974.

15. Yang B.F., Lin H.X., Xiao J.N., Lu Y., Luo X., Li B., Zhang Y., Xu C., Bai Y., Wang H., Chen G., Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 // Nat. Med. 2007. Vol. 13. N 4. P. 486–491.

16. Diana Tools mirPath v.3 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://snf-515788.vm.okeanos.grnet.gr/ (дата обращения: 25.10.2019).

17. KEGG: Kyoto Encyclopedia of Genes and Genomes [Электронный ресурс]. 2019. Дата обновления: 2019. URL: https://www.genome.jp/kegg/ (дата обращения: 25.10.2019).

18. TargetScan Release 7.2 [Электронный ресурс]. 2018. Дата обновления: 2018. URL: http://www.targetscan.org/vert_72/ (дата обращения: 25.10.2019).

19. Diana Tools TarBase v.8 [Электронный ресурс]. 2019. Дата обновления: 2019. URL: http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex (дата обращения: 25.10.2019).


Review

For citations:


Kuzmin V.S., Ivanova A.D., Pustovit K.B., Abramochkin D.V. Lipotransfection of miR-1-3p, miR-133a-3p and miR-153-3p changes the electrophysiological characteristics of rat working myocardium. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(1):31-36. (In Russ.)

Views: 213


ISSN 0137-0952 (Print)