Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Effect of photoperiodic conditions of the North-West Russia and exogenous melatonin on physiological and biochemical parameters in Syrian hamsters (Mesocricetus auratus)

Abstract

We studied the effect of the photoperiodic conditions of the North-West Russia (Republic of Karelia, Petrozavodsk) and exogenous melatonin on the body weight and the physiological and biochemical parameters of blood serum in males and females of the Syrian hamster (Mesocricetus auratus). The animals were divided into 2 groups: control (LD: 12 hours light/12 hours darkness) and experiment (NL: decrease in the duration of the daylight phase from 19:36/4:24 to 12/12, that is typical for the Republic of Karelia from June, 25 to September, 25). Each group was divided into 2 subgroups: hamsters of the 1st subgroup received drinking water without melatonin (LD, NL), and the 2nd group received melatonin (100 μg/animal) (LD + mel, NL + mel) at night. Males were more sensitive to the change in the photoperiod than females: their keeping in NL led to an increase in feed intake, body weight in the middle of the experiment, and total cholesterol and urea levels by the end of the experiment, while the activity of amylase, lactate dehydrogenase, and aspartate aminotransferase in the blood was lower compared to LD. It was established that the effect of melatonin on the studied parameters depended on the light regime and sex of the animals. Melatonin treatment the NL-females caused the enhancement of the effect of the light regime and the increase in the most of biochemical parameters of blood serum compared to the control, as well as the increase in body weight for the entire study period. The use of melatonin in the standard lighting conditions had a negative effect on the Syrian hamsters, causing intensification of metabolic processes and, as a result, a significant decrease in body weight in both males and females. In our opinion, the revealed differences between the experimental groups are primarily associated with a change in the synthesis of melatonin by the pineal gland in various light conditions.

About the Authors

E. P. Antonova
Institute of Biology of the Karelian; Research Centre of the Russian Academy of Sciences
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910


V. A. Ilyukha
Institute of Biology of the Karelian; Research Centre of the Russian Academy of Sciences
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910


S. N. Kalinina
Institute of Biology of the Karelian; Research Centre of the Russian Academy of Sciences
Russian Federation
11 Pushkinskaya Street, Petrozavodsk, Karelia, 185910


References

1. Arendt J. Melatonin: characteristics, concerns, and prospects // J. Biol. Rhythms. 2005. Vol. 20. N 4. P. 291–303.

2. Анисимов В.Н., Виноградова И.А., Букалев А.В., Попович И.Г., Забежинский М.А., Панченко А.В., Тындык М.Л., Юрова М.Н. Световой десинхроноз и риск злокачественных новообразований у лабораторных животных: состояние проблемы // Вопр. онкол. 2014. Т. 60. № 2. С. 15–27.

3. Madahi P. G., Ivan O., Adriana B., Diana O., Carolina E. Constant light during lactation programs circadian and metabolic systems // Chronobiol. Int. 2018. Vol. 35. N 8. P. 1153–1167.

4. Nelson R.J., Chbeir S. Dark matters: Effects of light at night on metabolism // Proc. Nutr. Soc. 2018. Vol. 77. N 3. P. 223–229.

5. Moreno J.P., Crowley S.J., Alfano C.A., Thompson D. Physiological mechanisms underlying children’s circannual growth patterns and their contributions to the obesity epidemic in elementary school age children // Obes. Rev. 2020. Vol. 21. N 3: e12973.

6. Touitou Y., Reinberg A., Touitou D. Association between light at night, melatonin secretion, sleep deprivation, and the internal clock: Health impacts and mechanisms of circadian disruption // Life Sci. 2017. Vol. 173. P. 94–106.

7. Vinogradova I., Anisimov V. Melatonin prevents the development of the metabolic syndrome in male rats exposed to different light/dark regimens // Biogerontology. 2013. Vol. 14. N 4. P. 401–409.

8. Рапопорт С.И. Хрономедицина, циркадианные ритмы. Кому это нужно? // Клин. мед. 2012. Т. 90. № 8. С. 73–75.

9. Ding A.J., Zheng S.Q., Huang X.B., Xing T.K., Wu G.S., Sun H.Y., Qi S.H., Luo H.R. Current perspective in the discovery of anti-aging agents from natural products // Nat. Prod. Bioprospect. 2017. Vol. 7. N 5. P. 335–404.

10. Cipolla-Neto J., Amaral F.G., Afeche S.C., Tan D.X., Reiter R.J. Melatonin, energy metabolism, and obesity: a review // J. Pineal Res. 2014. Vol. 56. N 4. P. 371–381.

11. Andersen L.P., Gögenur I., Rosenberg J., Reiter R.J. The safety of melatonin in humans // Clin. Drug Investig. 2016. Vol. 36. N 3. P. 169–175.

12. Chayama Y., Ando L., Tamura Y., Miura M., Yamaguchi Y. Decreases in body temperature and body mass constitute pre-hibernation remodelling in the Syrian golden hamster, a facultative mammalian hibernator // R. Soc. Open Sci. 2016. Vol. 3. N 4: 160002.

13. Pévet P., Challet E. Melatonin: both master clock output and internal time-giver in the circadian clocks network // J. Physiol. Paris. 2011. Vol. 105. N 4–6. P. 170–182.

14. Bartness T.J., Wade G.N. Photoperiodic control of seasonal body weight cycles in hamsters // Neurosci. Biobehav. Rev. 1985. Vol. 9. N 4. P. 599–612.

15. Mukherjee A., Haldar C. Photoperiodic regulation of melatonin membrane receptor (MT1R) expression and steroidogenesis in testis of adult golden hamster, Mesocricetus auratus // J. Photochem. Photobiol. B. 2014. Vol. 140. P. 374–380.

16. Chakir I., Dumont S., Pévet P., Ouarour A., Challet E.,Vuillez P. Pineal melatonin is a circadian time-giver for leptin rhythm in Syrian hamsters // Front. Neurosci. 2015. Vol. 9: 190.

17. Horton T.H., Buxton O.M., Losee-Olson S., Turek F.W. Twenty-four-hour profiles of serum leptin in siberian and golden hamsters: photoperiodic and diurnal variations // Horm. Behav. 2000. Vol. 37. N 4. P. 388–398.

18. Tamarkin L., Westrom W.K., Hamill A.I., Goldman B.D. Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin // Endocrinology. 1976. Vol. 99. N 6. P. 1534–1541.

19. Terrón M.P., Delgado-Adámez J., Pariente J.A., Barriga C., Paredes S.D., Rodríguez A.B. Melatonin reduces body weight gain and increases nocturnal activity in male Wistar rats // Physiol. Behav. 2013. Vol. 118. P. 8–13.

20. Шпаков А.О., Деркач К.В. Гонадолиберин – синтез, секреция, молекулярные механизмы и мишени действия // Acta Biomedica Scientifica. 2019. Т. 4. № 2. С. 7–15.

21. Jaworek J., Szklarczyk J., Jaworek A.K., Nawrot-Porąbka K., Leja-Szpak A., Bonior J., Kot M. Protective effect of melatonin on acute pancreatitis // Int. J. Inflam. 2012. Vol. 2012: 173675.

22. Jaworek J., Leja-Szpak A., Nawrot-Porąbka K., Szklarczyk J., Kot M., Pierzchalski P., Góralska M., Ceranowicz P., Warzecha Z., Dembinski A., Bonior J. Effects of melatonin and its analogues on pancreatic inflammation, enzyme secretion, and tumorigenesis // Int. J. Mol. Sci. 2017. Vol. 18. N 5: 1014.

23. Zhang J.J., Meng X., Li Y., Zhou Y., Xu D.P., Li S., Li H.B. Effects of melatonin on liver injuries and diseases // Int. J. Mol. Sci. 2017. Vol. 18. N 4: 973.

24. Reiter R.J. The melatonin message: Duration versus coincidence hypotheses // Life Sci. 1987. Vol. 40. N 22. P. 2119–2131.

25. Larimer S.C., Fritzsche P., Song Z., Johnston J., Neumann K., Gattermann R., McPhee M.E., Johnston R.E. Foraging behavior of golden hamsters (Mesocricetus auratus) in the wild // J. Ethol. 2011. Vol. 29. N 2. P. 275–283.


Review

For citations:


Antonova E.P., Ilyukha V.A., Kalinina S.N. Effect of photoperiodic conditions of the North-West Russia and exogenous melatonin on physiological and biochemical parameters in Syrian hamsters (Mesocricetus auratus). Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(3):145-152. (In Russ.)

Views: 284


ISSN 0137-0952 (Print)