Investigation of the effect of a single-strand break on the mechanical parameters of DNA by molecular dynamics method
Abstract
About the Authors
O. I. VolokhRussian Federation
Department of Bioengineering, Faculty of Biology
Leninskiye Gory 1–12, Moscow, 119234
G. A. Armeev
Russian Federation
Department of Bioengineering, Faculty of Biology
Leninskiye Gory 1–12, Moscow, 119234
E. S. Trifonova
Russian Federation
Department of Bioengineering, Faculty of Biology
Leninskiye Gory 1–12, Moscow, 119234
O. S. Sokolova
Russian Federation
Department of Bioengineering, Faculty of Biology
Leninskiye Gory 1–12, Moscow, 119234
References
1. Klein H.L., Bačinskaja G., Che J., et al. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways // Microb. Cell. 2019. Vol. 6. N 1. P. 1–64.
2. Higo T., Naito A., Sumida T., et al. DNA singlestrand break-induced DNA damage response causes heart failure // Nat. Commun. 2017. Vol. 8: 15104.
3. Lindahl T. Instability and decay of the primary structure of DNA // Nature. 1993. Vol. 362. N 6422. P. 709–715.
4. Kulaeva O., Gaykalova D., Pestov N., Golovastov V., Vassylyev D., Artsimovitch I., Studitsky V. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272–1278.
5. Gaykalova D.A., Kulaeva O.I., Volokh O., Shaytan A.K., Hsieh F.K., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M. Structural analysis of nucleosomal barrier to transcription // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 43. P. E5787–E5795.
6. Gerasimova N.S., Pestov N. A., Kulaeva O.I., Nikitin D.V., Kirpichnikov M.P., Studitsky V.M. Repair of chromatinized DNA // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 3. P. 122–126.
7. Pestov N.A., Gerasimova N.S., Kulaeva O.I., Studitsky V.M. Structure of transcribed chromatin is a sensor of DNA damage // Sci. Adv. 2015. Vol. 1. N 6: e1500021.
8. van der Spoel D., Lindahl E., Hess B., the GROMACS development team. GROMACS User Manual version 4.6.5. 2013.
9. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field // Proteins. 2010. Vol. 78. N 8. P. 1950–1958.
10. Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials // J. Phys. Chem. 1987. Vol. 91. N 24. P. 6269–6271.
11. Levitt M., Hirshberg M., Sharon R., Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution // Comput. Phys. Commun. 1995. Vol. 91. N 1–3. P. 215–231.
12. Darden T.A., Pedersen L.G. Molecular modeling: an experimental tool // Environ. Health Perspect. 1993. Vol. 101. N 5 P. 410–412.
13. Goddard T.D., Huang C.C., Ferrin T.E. Visualizing density maps with UCSF Chimera // J. Struct. Biol. 2007. Vol. 157. N 1. P. 281–287.
14. Lu, X.-J., Shakked Z., Olson W.K. A-form conformational motifs in ligand-bound DNA structures // J. Mol. Biol. 2000. Vol. 300. N 4. P. 819–840.
15. Colasanti A.V., Lu X. J., Olson W.K. Analyzing and building nucleic acid structures with 3DNA // J. Vis. Exp. 2013. N 74: e4401.
16. Lu X. J., Olson W. K. 3DNA: a software package for the analysis, rebuilding and visualization of threedimensional nucleic acid structures // NAR. 2003. Vol. 31. N 17. P. 5108–5121.
17. Volokh O.I., Bozdaganyan M.E., Shaitan K.V. Assessment of the DNA-binding properties of actinomycin and its derivatives by molecular dynamics simulation // Biophysics. 2015. Vol. 60. N 6. P. 893–899.
18. Kumar R., Grubmüller H. do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations // Bioinformatics. 2015. Vol. 31. N 15. P. 2583–2585.
19. Lankaš F., Šponer J., Langowski J., Cheatham T.E. DNA basepair step deformability inferred from molecular dynamics simulations // Biophys. J. 2003. Vol. 85. N 5. P. 2872–2883.
20. Olson W.K., Zhurkin V.B. Modeling DNA deformations // Curr. Opin. Struct. Biol. 2000. Vol. 10. N 3. P. 286–297.
21. Banáš P., Mládek, A., Otyepka, M., Zgarbová, M., Jurečka, P., Svozil, D., Lankaš F., Šponer, J. Can we accurately describe the structure of adenine tracts in B-DNA? Reference quantum-chemical computations reveal overstabilization of stacking by molecular mechanics // J. Chem. Theory Comput. 2012. Vol. 8. N 7. P. 2448–2460.
22. Cocco S., Marko J. F., Monasson R. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping // C. R. Phys. 2002. Vol. 3. N 5. P. 569–584.
23. Marko J.F., Cocco S. 2003. The micromechanics of DNA // Phys World. 2003. Vol. 16. N 3. P. 37–41.
24. Bloom K.S. Beyond the code: the mechanical properties of DNA as they relate to mitosis // Chromosoma. 2008. Vol. 117. N 2. P. 103–110.
25. Sobell H.M. Actinomycin and DNA transcription // Proc. Natl. Acad. Sci. 1985. Vol. 82. N 16. P. 5328–5331.
26. Liu Y.F., Ran S.Y. Divalent metal ions and intermolecular interactions facilitate DNA network formation // Colloids Surf. B. 2020. Vol. 194: 111117.
27. Armeev G.A., Shaitan K.V., Shaitan A.K. Molecular dynamics study of the ionic environment and electrical characteristics of nucleosomes // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N. 4. P. 173–176.
28. Moiseenko A., Loiko N., Tereshkina K., Danilova Y., Kovalenko V., Chertkov O., Feofanov A.V., Krupyanskii Yu.F., Sokolova O.S. Projection structures reveal the position of the DNA within DNA-Dps Co-crystals // Biochem. Biophys. Res. Commun. 2019. Vol. 517. N 3. P. 463–469.
29. Jiang Y., Zhang H., Feng W., Tan T. Refined dummy atom model of Mg2+ by simple parameter screening strategy with revised experimental solvation free energy // J. Chem. Inf. Model. 2015. Vol. 55. N 12. P. 2575–2586.
30. Bondarenko V., Steele L., Ujvari A., Gaykalova D., Kulaeva O., Polikanov Y., Luse D., Studitsky V. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II // Mol. Cell. 2006. Vol. 24. N 3. P. 469–479.
31. Hsieh F.K., Fisher M., Ujvari A., Studitsky V., Luse D. Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II // EMBO Rep. 2010. Vol. 11. N 9. P. 705–710.
32. Kulaeva O., Gaykalova D., Pestov N., Golovastov V., Vassylyev D., Artsimovitch I., Studitsky V. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272–1278.
33. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University // Contemporary high performance computing: from petascale toward exascale / Ed. S.V. Jeffery. Boca Raton: CRC Press, 2013. P. 283–307.
Review
For citations:
Volokh O.I., Armeev G.A., Trifonova E.S., Sokolova O.S. Investigation of the effect of a single-strand break on the mechanical parameters of DNA by molecular dynamics method. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(3):164-169. (In Russ.)