Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Investigation of the effect of a single-strand break on the mechanical parameters of DNA by molecular dynamics method

Abstract

Early detection and repair of damaged DNA is important for cell functioning and survival. The recently proposed mechanism of intra-nucleosome loop formation suggests relaxation of DNA supercoiling accumulated during transcription through damaged chromatin. The degree of DNA relaxation is affected by the mechanical properties and structure of the double helix. In this paper we investigated the consequences of the introduction of a single-stranded break on the mechanical properties of a DNA fragment by molecular dynamics. It was concluded that the introduction of a single-stranded break leads to decreased stiffness and higher elasticity of the damaged DNA molecule as compared to the intact one. This, in turn, may lead to relief of the supercoiling of the defective DNA and arrest of the enzyme.

About the Authors

O. I. Volokh
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology

Leninskiye Gory 1–12, Moscow, 119234

 



G. A. Armeev
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology

Leninskiye Gory 1–12, Moscow, 119234



E. S. Trifonova
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology

Leninskiye Gory 1–12, Moscow, 119234



O. S. Sokolova
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, Faculty of Biology

Leninskiye Gory 1–12, Moscow, 119234



References

1. Klein H.L., Bačinskaja G., Che J., et al. Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways // Microb. Cell. 2019. Vol. 6. N 1. P. 1–64.

2. Higo T., Naito A., Sumida T., et al. DNA singlestrand break-induced DNA damage response causes heart failure // Nat. Commun. 2017. Vol. 8: 15104.

3. Lindahl T. Instability and decay of the primary structure of DNA // Nature. 1993. Vol. 362. N 6422. P. 709–715.

4. Kulaeva O., Gaykalova D., Pestov N., Golovastov V., Vassylyev D., Artsimovitch I., Studitsky V. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272–1278.

5. Gaykalova D.A., Kulaeva O.I., Volokh O., Shaytan A.K., Hsieh F.K., Kirpichnikov M.P., Sokolova O.S., Studitsky V.M. Structural analysis of nucleosomal barrier to transcription // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 43. P. E5787–E5795.

6. Gerasimova N.S., Pestov N. A., Kulaeva O.I., Nikitin D.V., Kirpichnikov M.P., Studitsky V.M. Repair of chromatinized DNA // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N 3. P. 122–126.

7. Pestov N.A., Gerasimova N.S., Kulaeva O.I., Studitsky V.M. Structure of transcribed chromatin is a sensor of DNA damage // Sci. Adv. 2015. Vol. 1. N 6: e1500021.

8. van der Spoel D., Lindahl E., Hess B., the GROMACS development team. GROMACS User Manual version 4.6.5. 2013.

9. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field // Proteins. 2010. Vol. 78. N 8. P. 1950–1958.

10. Berendsen H.J.C., Grigera J.R., Straatsma T.P. The missing term in effective pair potentials // J. Phys. Chem. 1987. Vol. 91. N 24. P. 6269–6271.

11. Levitt M., Hirshberg M., Sharon R., Daggett V. Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution // Comput. Phys. Commun. 1995. Vol. 91. N 1–3. P. 215–231.

12. Darden T.A., Pedersen L.G. Molecular modeling: an experimental tool // Environ. Health Perspect. 1993. Vol. 101. N 5 P. 410–412.

13. Goddard T.D., Huang C.C., Ferrin T.E. Visualizing density maps with UCSF Chimera // J. Struct. Biol. 2007. Vol. 157. N 1. P. 281–287.

14. Lu, X.-J., Shakked Z., Olson W.K. A-form conformational motifs in ligand-bound DNA structures // J. Mol. Biol. 2000. Vol. 300. N 4. P. 819–840.

15. Colasanti A.V., Lu X. J., Olson W.K. Analyzing and building nucleic acid structures with 3DNA // J. Vis. Exp. 2013. N 74: e4401.

16. Lu X. J., Olson W. K. 3DNA: a software package for the analysis, rebuilding and visualization of threedimensional nucleic acid structures // NAR. 2003. Vol. 31. N 17. P. 5108–5121.

17. Volokh O.I., Bozdaganyan M.E., Shaitan K.V. Assessment of the DNA-binding properties of actinomycin and its derivatives by molecular dynamics simulation // Biophysics. 2015. Vol. 60. N 6. P. 893–899.

18. Kumar R., Grubmüller H. do_x3dna: a tool to analyze structural fluctuations of dsDNA or dsRNA from molecular dynamics simulations // Bioinformatics. 2015. Vol. 31. N 15. P. 2583–2585.

19. Lankaš F., Šponer J., Langowski J., Cheatham T.E. DNA basepair step deformability inferred from molecular dynamics simulations // Biophys. J. 2003. Vol. 85. N 5. P. 2872–2883.

20. Olson W.K., Zhurkin V.B. Modeling DNA deformations // Curr. Opin. Struct. Biol. 2000. Vol. 10. N 3. P. 286–297.

21. Banáš P., Mládek, A., Otyepka, M., Zgarbová, M., Jurečka, P., Svozil, D., Lankaš F., Šponer, J. Can we accurately describe the structure of adenine tracts in B-DNA? Reference quantum-chemical computations reveal overstabilization of stacking by molecular mechanics // J. Chem. Theory Comput. 2012. Vol. 8. N 7. P. 2448–2460.

22. Cocco S., Marko J. F., Monasson R. Theoretical models for single-molecule DNA and RNA experiments: from elasticity to unzipping // C. R. Phys. 2002. Vol. 3. N 5. P. 569–584.

23. Marko J.F., Cocco S. 2003. The micromechanics of DNA // Phys World. 2003. Vol. 16. N 3. P. 37–41.

24. Bloom K.S. Beyond the code: the mechanical properties of DNA as they relate to mitosis // Chromosoma. 2008. Vol. 117. N 2. P. 103–110.

25. Sobell H.M. Actinomycin and DNA transcription // Proc. Natl. Acad. Sci. 1985. Vol. 82. N 16. P. 5328–5331.

26. Liu Y.F., Ran S.Y. Divalent metal ions and intermolecular interactions facilitate DNA network formation // Colloids Surf. B. 2020. Vol. 194: 111117.

27. Armeev G.A., Shaitan K.V., Shaitan A.K. Molecular dynamics study of the ionic environment and electrical characteristics of nucleosomes // Moscow Univ. Biol. Sci. Bull. 2015. Vol. 70. N. 4. P. 173–176.

28. Moiseenko A., Loiko N., Tereshkina K., Danilova Y., Kovalenko V., Chertkov O., Feofanov A.V., Krupyanskii Yu.F., Sokolova O.S. Projection structures reveal the position of the DNA within DNA-Dps Co-crystals // Biochem. Biophys. Res. Commun. 2019. Vol. 517. N 3. P. 463–469.

29. Jiang Y., Zhang H., Feng W., Tan T. Refined dummy atom model of Mg2+ by simple parameter screening strategy with revised experimental solvation free energy // J. Chem. Inf. Model. 2015. Vol. 55. N 12. P. 2575–2586.

30. Bondarenko V., Steele L., Ujvari A., Gaykalova D., Kulaeva O., Polikanov Y., Luse D., Studitsky V. Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II // Mol. Cell. 2006. Vol. 24. N 3. P. 469–479.

31. Hsieh F.K., Fisher M., Ujvari A., Studitsky V., Luse D. Histone Sin mutations promote nucleosome traversal and histone displacement by RNA polymerase II // EMBO Rep. 2010. Vol. 11. N 9. P. 705–710.

32. Kulaeva O., Gaykalova D., Pestov N., Golovastov V., Vassylyev D., Artsimovitch I., Studitsky V. Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II // Nat. Struct. Mol. Biol. 2009. Vol. 16. N 12. P. 1272–1278.

33. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. “Lomonosov”: Supercomputing at Moscow State University // Contemporary high performance computing: from petascale toward exascale / Ed. S.V. Jeffery. Boca Raton: CRC Press, 2013. P. 283–307.


Review

For citations:


Volokh O.I., Armeev G.A., Trifonova E.S., Sokolova O.S. Investigation of the effect of a single-strand break on the mechanical parameters of DNA by molecular dynamics method. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(3):164-169. (In Russ.)

Views: 430


ISSN 0137-0952 (Print)