Effect of gossypol on nucleosome structure
Abstract
Gossypol is a highly active compound with antiviral, antioxidant, antimicrobial, antimalarial and antitumor properties. It is known that the antitumor effect of gossypol is associated with genotoxicity, but interaction of gossypol with chromatin was not investigated. In this work,using microscopy of single particles based on the Förster resonance energy transfer it was found that at 10 M or higher concentration, gossypol causes significant structural changes in the conformation of nucleosomal DNA on the histone octamer. These changes affect at least 35 bp of nucleosomal DNA, increase the distance between neighboring gyres of nucleosomal DNA in this region to 9 nm or more, and appear to be associated with uncoiling of nucleosomal DNA. The presence of linker DNA somewhat increases the resistance of nucleosomes to the gossypol action, as compared with core nucleosomes. At a concentration of 30 μM or higher, gossypol completely disrupts the structure of nucleosomes, causing dissociation of core histones from DNA. The obtained data indicate that gossypol genotoxicity observed in vivo could be associated with a direct effect of gossypol on chromatin, leading to destabilization of the nucleosome structure.
About the Authors
N. V. MalyuchenkoRussian Federation
Bioengineering Department, Biological Faculty
Leninskie Gory 1–12, Moscow, 119234
D. O. Koshkina
Russian Federation
Bioengineering Department, Biological Faculty
Leninskie Gory 1–12, Moscow, 119234
A. N. Korovina
Russian Federation
Bioengineering Department, Biological Faculty
Leninskie Gory 1–12, Moscow, 119234
N. S. Gerasimova
Russian Federation
Bioengineering Department, Biological Faculty
Leninskie Gory 1–12, Moscow, 119234
M. P. Kirpichnikov
Russian Federation
Bioengineering Department, Biological Faculty
Leninskie Gory 1–12, Moscow, 119234
V. M. Studitsky
Russian Federation
Bioengineering Department, Biological Faculty, Cancer Epigenetics Team
Leninskie Gory 1–12, Moscow, 119234
Cottman Avenue 333, Philadelphia, PA 19111, USA
A. V. Feofanov
Russian Federation
Bioengineering Department, Biological Faculty, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Leninskie Gory 1–12, Moscow, 119234
ul. Miklukho-Maklaya 16/10, Moscow, 117997
References
1. Tian X., Fang X., Huang J., Wang Q.J., Mao Y B., Chen X.Y. A gossypol biosynthetic intermediate disturbs plant defence response // Philos. Trans R Soc. Lond. B Biol. Sci. 2019. Vol. 374. N 1767: 20180319.
2. Jia L., Coward L.C., Kerstner-Wood C.D., Cork R.L., Gorman G.S., Noker P.E., Kitad S., Pellecchia M., Reed J.C. Comparison of pharmacokinetic and metabolic profiling among gossypol, apogossypol and apogossypolhexaacetate // Cancer Chemother. Pharmacol. 2008. Vol. 61. N 1. P. 63–73.
3. Benvenuto M., Mattera R., Masuelli L., Taffera G., Andracchio O., Tresoldi I., Lido P., Giganti M. G., Godos J., Modesti A., Bei R. (+/-)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice // Int. J. Food Sci. Nutr. 2017. Vol. 68. N 3. P. 298–312.
4. Lin J., Wu Y., Yang D., Zhao Y. Induction of apoptosis and antitumor effects of a small molecule inhibitor of Bcl-2 and Bcl-xl, gossypol acetate, in multiple myeloma in vitro and in vivo // Oncol. Rep. 2013. Vol. 30. N 2. P. 731–738.
5. Meng Y., Tang W., Dai Y., Wu X.M. Liu Ji Q. ,Ji M., Pienta K., Lawrence T., Xu L. Natural BH3 mimetic (-)-gossypol chemosensitizes human prostate cancer via Bcl-xL inhibition accompanied by increase of Puma and Noxa // Mol. Cancer Ther. 2008. Vol. 7. N 7. P. 2192–2021.
6. Lian J., Karnak D., Xu L. The Bcl-2-Beclin 1 interaction in (-)-gossypol-induced autophagy versus apoptosis in prostate cancer cells // Autophagy. 2010. Vol. 6. N 8. P. 1201–1203.
7. Wang Y., Rao P.N. Effect of gossypol on DNA synthesis and cell cycle progression of mammalian cells in vitro // Cancer Res. 1984. Vol. 44. N 1. P. 35–38.
8. Na Z., Peng B., Ng S., Pan S., Lee J. S., Shen H.M., Yao S.Q. A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain // Angew. Chem. Int. Ed. Engl. 2015. Vol. 54. N 8. P. 2515–2519.
9. Rao M.V., Narechania M. B. The genotoxic effects of anti-cancer drug gossypol on human lymphocytes and its mitigation by melatonin // Drug Chem. Toxicol. 2016. Vol. 39. N 4. P. 357–361.
10. Luz V.B., Gadelha I.C.N.,Cordeiro L.A.V., Melo M.M., Soto-Blanco B. In vitro study of gossypol’s ovarian toxicity to rodents and goats // Toxicon. 2018. Vol. 145. P. 56–60.
11. Belotserkovskaya R., Bondarenko V.A., Orphanides G., Studitsky V.M., Reinberg D. FACT facilitates transcription-dependent nucleosome alteration // Science. 2003. Vol. 301. N. 5636. P. 1090–1093.
12. Valieva M.E., Armeev G.A., Kudryashova K.S., Gerasimova N.S., Shaytan A.K., Kulaeva O.I., Mccullough L.L., Formosa T., Georgiev P.G., Kirpichnikov M.P. Studitsky V.M., Feofanov A.V. Large-scale ATP-independent nucleosome unfolding by a histone chaperone // Nat. Struct. Mol. Biol. 2016. Vol.
13. N 12. P. 1111–1116. 13. Chang H.W., Kulaeva O.I., Shaytan A.K., Kibanov M., Kuznedelov K., Severinov K.V., Kirpichnikov M.P., Clark D.J., Studitsky V.M. Analysis of the mechanism of nucleosome survival during transcription // Nucleic Acids Res. 2014. Vol. 42. N 3. P. 1619–1627.
14. Nilov D., Maluchenko N., Kurgina T., Pushkarev S., Lys A., Kutuzov M., Gerasimova N., Feofanov, A.V., Svedas V., Lavrik O., Studitsky V.M. Molecular mechanisms of PARP-1 inhibitor 7-methylguanine // Int. J. Mol. Sci. 2020. Vol. 21. N 6: E2159.
15. Mccullough L.L., Connell Z., Xin H., Studitsky V.M., Feofanov A.V., Valieva M.E., Formosa T. Functional roles of the DNA-binding HMGB domain in the histone chaperone FACT in nucleosome reorganization // J. Biol. Chem. 2018. Vol. 293. N. 16. P. 6121–6133.
16. Sultanov D.C., Gerasimova N.S., Kudryashova K.S., Maluchenko N.V., Kotova E.Y., Langelier M.F., Pascal J.M., Kirpichnikov M.P., Feofanov A.V., Studitsky V.M. Unfolding of core nucleosomes by PARP-1 revealed by spFRET microscopy // AIMS Genet. 2017. Vol. 4. N. 1. P. 21–31.
17. Chang H.W., Valieva M.E., Safina A., Chereji R.V., Wang J., Kulaeva O. I., Morozov A. V., Kirpichnikov M.P., Feofanov A.V., Gurova K.V., Studitsky V.M. Mechanism of FACT removal from transcribed genes by anticancer drugs curaxins // Sci. Adv. 2018. Vol. 4. N 11: eaav 2131.
18. Maluchenko N.V., Sultanov D.S., Kotova E.Y., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Histone tails promote PARP1-dependent structural rearrangements in nucleosomes // Dokl. Biochem. Biophys. 2019. Vol. 489. N 1. P. 377–379.
19. Morozov A.V., Fortney K., Gaykalov, D.A., Studitsky V.M., Widom J., Siggia E.D. Using DNA mechanics to predict in vitro nucleosome positions and formation energies // Nucleic Acids Res. 2009. Vol. 37. N 14. P. 4707–4722.
20. Kudryashova K.S., Chertkov O.V., Nikitin D.V, Pestov N.A., Kulaeva O.I., Efremenko A.V., Solonin A.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Preparation of mononucleosomal templates for analysis of transcription with RNA polymerase using spFRET // Methods Mol. Biol. 2015. Vol. 1288. P. 395–412.
21. Kulaeva O.I., Studitsky V.M. Preparation and analysis of positioned mononucleosomes // Chromatin protocols. Methods in molecular biology. Vol. 1288 / Ed.S. Chellappan. N.Y.: Humana Press, 2015. P. 15–26.
22. Zaidi R., Hadi S.M. Interaction of gossypol with DNA // Toxicol. In Vitro. 1992. Vol. 6. N 1. P. 71–76.
23. Zaidi R., Hadi S.M. Complexes involving gossypol, DNA and Cu(II) // Biochem. Int. 1992. Vol. 28. N 6. P. 1135–1143.
Review
For citations:
Malyuchenko N.V., Koshkina D.O., Korovina A.N., Gerasimova N.S., Kirpichnikov M.P., Studitsky V.M., Feofanov A.V. Effect of gossypol on nucleosome structure. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(3):170-175. (In Russ.)