Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Small photosynthetic flagellates of the White Sea: seasonal dynamics and role in plankton and ice communities

Abstract

Abundance and biomass of small photosynthetic flagellates (SPF; 3–10 µm), chlorophyll a, and the contribution of SPF to total phytoplankton biomass in different stages of seasonal succession in ice and the surface water were studied in Kandalaksha Bay of the White Sea in September 2016, February and July 2017. In summer SPF biomass in the photic layer averaged 38.36±9.77 mg С/м3, in autumn – 2.22±1.43 mg С/м3, in under-ice water – 2.6±1.72 mg С/м3, and in ice – 14.79±11.25 mg С/м3. The contribution of SPF to total phytoplankton biomass depends of the season and ranged from 29% to 95%, the contribution to sympagic communities averaged 66%. The size structure of photosynthetic flagellates varied by seasons. Flagellates with cell size 6–10 µm dominated in summer plankton and in the ice. Flagellates with cell size 3–6 µm prevailed in autumn and in the under-ice water. The obtained data of SPF abundance gave higher values of the total phytoplankton biomass of the White Sea in the autumn-winter period compared with the estimates obtained previously. Applying the method of epifluorescence microscopy confirms the assumption that photosynthetic flagellates are the main producers in the winter period, as well as in the summer when the biomass of planktonic algae with cell size more than 10 µm is low.more than 10 µm is low.

About the Authors

E. R. Nikishova
Lomonosov Moscow State University
Russian Federation

Department of General Ecology and Hydrobiology, School of Biology

Leninskiye gory 1–12, Moscow, 119234



I. G. Radchenko
Lomonosov Moscow State University
Russian Federation

Department of General Ecology and Hydrobiology, School of Biology

Leninskiye gory 1–12, Moscow, 119234



T. A. Belevich
Lomonosov Moscow State University; A.N. Belozersky Institute of Physico-Chemical Biology
Russian Federation

Department of General Ecology and Hydrobiology, School of Biology

Leninskiye gory 1–12, Moscow, 119234

Leninskiye gory 1–40, Moscow



References

1. Hernandez-Ruiz M., Barber-Lluch E., Prieto A., Alvarez-Salgado X.A., Logares R., Teira E. Seasonal succession of small planktonic eukaryotes inhabiting surface waters of a coastal upwelling system // Env. Microb. 2018. Vol. 20. N 8. P. 2955–2973.

2. Crawford D.W., Cefarelli A.O., Wrohan I.A., Wyatt S.N., Varela D.E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano- and microphytoplankton in Subarctic and Arctic Seas // Prog. Oceanogr. 2018. Vol. 162. P. 132–159.

3. Kubiszyn, A.M., Wiktor, J.M., Wiktor J.M.Jr., Griffiths C., Kristiansen S., Gabrielsen T.M. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen) // J. Mar. Syst. 2017. Vol. 169. P. 61–72.

4. Sieburth J.M., Smetacek V., Lenz J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationships to plankton size fractions // Limnol. Oceanogr. 1978. Vol. 23. N 6. P. 1256–1263.

5. Moon-van der Staay S.Y., De Wachter R., Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity // Nature. 2001. Vol. 409. N 6820. P. 607–610.

6. Caron D.A. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures // Appl. Environ. Microbiol. 1983. Vol. 46. N 2. P. 491–498.

7. Hobbie J.E., Daley R.J., Jasper S. Use of nuclepore filters for counting bacteria by fluorescence microscopy // Appl. Environ. Microbiol. 1977. Vol. 33. N 5. P. 1225–1228.

8. Belevich T.A., Ilyash L.V. Picophytoplankton abundance in the Velikaya Salma strait, White Sea // Microbiology. 2012. Vol. 81. N 3. P. 360–366.

9. Hillebrand H., Durselen C.D., Kirschtel D., Pollingher U., Zohary T. Biovolume calculation for pelagic and benthic microalgae // J. Phycol. 1999. Vol. 35. N 2. P. 403–424.

10. Menden-Deuer S., Lessard E.J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton // Limnol. Oceanogr. 2000 Vol. 45. N 3. P. 569–579.

11. Arar E.J., Collins G.B. Method 445.0: In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. Cincinnati: United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 1997. 22 pp.

12. Hammer Ø., Harper D.A.T., Ryan P. D. PAST: Paleontological Statistics Software Package for education and data analysis // Palaeontol. Electron. 2001. Vol. 4. N 1: 4.

13. Sazhin A. Phototrophic and heterotrophic nanoand microorganisms of sea ice and sub-ice water in Guba Chupa (Chupa Inlet), White Sea, in April 2002 // Polar Research. 2004. Vol. 23. N 1. P. 11–18.

14. Ильяш Л.В., Житина Л.С., Кудрявцева В.А., Мельников И.А. Сезонная динамика видового состава и биомассы водорослей в прибрежных льдах Канда- лакшского залива Белого моря // Журн. общ. биол. 2012. Т. 73. № 6. С. 461–472.

15. Bolaños L.M., Karp-Boss L., Choi C.J., et al. Small phytoplankton dominate western North Atlantic biomass // ISME J. 2020. Vol. 14. P. 1663–1674.

16. Wassmann P. Arctic marine ecosystems in an era of rapid climate change // Prog. Oceanogr. 2011. Vol. 90. N 1. P. 1–17.

17. Coello-Camba A., Agustí S., Vaqué D., Holding J., Arrieta J.M., Wassmann P., Duarte C.M. Experimental assessment of temperature thresholds for Arctic phytoplankton communities // Estuar. Coasts. 2015. Vol. 38. N 3. P. 873–885.

18. Sherrr E.B., Wheeler P.A. Thompson K. Temporal and spatial variation in stocks of autotrophic and heterotrophic microbes in the upper water column of the central Arctic Ocean // Deep Sea Res. Pt. I: Oceanogr. Res. Pap. 2003. Vol. 50. N 5. P. 557–571.

19. Vaqué D., Guadayol O., Peters F., Felipe J., Angel-Ripoll L., Terrado R., Lovejoy C., Pedrós-Alioó C. Seasonal changes in planktonic bacterivory rates under the icecovered coastal Arctic Ocean // Limnol. Oceanogr. 2008. Vol. 53. N 6. P. 2427–2438.

20. Mostajir B., Gosselin M., Gratton Y., Booth B., Vasseur C., Garneau M.È., Fouilland É., Vidussi F., Demers S. Surface water distribution of pico- and nanophytoplankton in relation to two distinctive water masses in the North Water, northern Baffin Bay, during fall // Aquat. Microb. Ecol. 2001. Vol. 23. N 2. P. 205–212.

21. Waleron M., Waleron K., Vincent W.F., Wilmotte A. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean // FEMS Microbiol. Ecol. 2007. Vol. 59. N 2. P. 356–365.

22. Sanders R.W., Gast R.J. Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters // FEMS Microbiol. Ecol. 2012. Vol. 82. N 2. P. 242–253.

23. Gradinger R. Occurrence of an algal bloom under Arctic pack ice // Mar. Ecol. Prog. Ser. 1996. Vol. 131. P. 301–305.

24. Demers S., Therriault J.C., Descolas-Gros C. Biomasse et composition specifique de la microflore des glaces saisonnieres: influences de la lumiere et de la vitesse de congelation // Mar. Biol. 1984. Vol. 78. N 2. P. 185–191.

25. Сарухан-Бек К.К., Радченко И.Г., Кольцова Т.И. Фитопланктон губы Чупа (Кандалакшский залив Белого моря) // Исследования фитопланктона в системе мониторинга Балтийского моря и других морей СССР / Под ред. И. Я. Агаровой, Е. Ю. Гупало. М.: Гидрометеоиздат, 1990. С. 111–119.

26. Ильяш Л.В., Ратькова Т.Н., Радченко И.Г., Житина Л.С. Фитопланктон Белого моря // Система Белого моря. Т. II. Водная толща и взаимодействующие с ней атмосфера, криосфера, речной сток и биосфера / Под ред. А.П. Лисицына. М.: Научный мир, 2012. С. 605–639.


Review

For citations:


Nikishova E.R., Radchenko I.G., Belevich T.A. Small photosynthetic flagellates of the White Sea: seasonal dynamics and role in plankton and ice communities. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(3):176-181. (In Russ.)

Views: 336


ISSN 0137-0952 (Print)