The role of peripheral environment of neuronal receptors in the perception of stimuli by sensory organs of insects: facts and hypotheses
Abstract
The role of intermediate substrates represented by morphological structures or chemical compounds, located between the information carrier (stimulus) and the dendrite receptors of insect sensory organs is considered on example of olfactory, visual, mechanical, hygro-, and thermoreceptors. Intermediate substrates in olfactory sensillae are represented by their cuticular regions, pores or pore-tubular system, sensillum lymph, and odorant-binding proteins. Intermediate structures also imply articular membrane (mechanoreceptor hairs), tympanic membrane (hearing organs), mineral statoliths (gravity receptors), iron oxide nanoparticles (magnetic field receptors), matrix surrounding the dendrites (hygroreceptors), microparticles associated with the dendrite membrane (thermoreceptors), and non-sclerotized mesocuticle (infrared receptors). There are two stages in propagation of a signal that is perceived by sense organs of most modalities: 1) before signal contacts the peripheral environment (substance or structure); 2) after signal contacts the peripheral environment. Besides, a signal of one modality on the first stage of its propagation can be replaced by a signal of other modality at the second stage of propagation, as, for example, in hygro- or thermoreceptors, since the primary stimulus (moisture, heat/cold, infrared radiation) is replaced by a mechanical effect on the dendrite membrane of its peripheral environment. The mechanisms of signal modality substitution in many sense organs, as well as the role of odorant-binding proteins and pore tubes in olfactory sensillae have not been fully elucidated and require further study.
About the Author
S. Yu. ChaikaRussian Federation
Leninskiye gory 1–12, Moscow, 119234
References
1. Vinnikov Y.A. Sensory reception: cytology, molecular mechanisms and evolution. Berlin; Heidelberg: SpringerVerlag, 1974. 401 pp.
2. Clyne P.J., Warr C.G., Freeman M.R., Lessing D., Kim J., Carlson J.R. A novel family of divergent seventransmembrane proteins: candidate odorant receptors in Drosophila // Neuron. 1999. Vol. 22. N 2. P. 327–338.
3. Gao Q., Chess A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence // Genomic. 1999. Vol. 60. N 1. P. 31–39.
4. Vosshall L.B., Amrein H., Morozov P.S., Rzhetsky A., Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna // Cell. 1999. Vol. 96. N 5. P. 725–736.
5. Leal W.S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes // Annu. Rev. Entomol. 2013. Vol. 58. P. 373–391.
6. Andersson M.N., Löfstedt C., Newcomb R.D. Insect olfaction and the evolution of receptor tuning // Front. Ecol. Evol. 2015. Vol. 3: 53.
7. Brito N.F., Moreira M.F., Melo A.C.A. A look inside odorant-binding protein in insect chemoreception // J. Insect Physiol. 2016. Vol. 95. P. 51–65.
8. Чайка С.Ю. Гистология насекомых: Учебное пособие. М.: Изд-во Моск. ун-та, 2017. 520 с.
9. Hallem E.A., Dahanukar A., Carlson J.R. Insect odor and taste receptors // Annu. Rev. Entomol. 2006. Vol. 51. P. 113–135.
10. Clyne P., Warr C., Carlson J. Candidate taste receptors in Drosophila // Science. 2000. Vol. 287. N 5459. P. 1830–1834.
11. Dunipace L., Meister S., McNealy C., Amrein H. Spatially restricted expression of candidate taste receptors in the Drosophila gustatory system // Curr. Biol. 2001. Vol. 11. N 11. P. 822–835.
12. Galindo K., Smith D.P. A large family of divergent Drosophila odorant-binding proteins expressed in gustatory and olfactory sensilla // Genetics. 2001. Vol. 159. N 3. P. 1059–1072.
13. Koganezawa M., Shimada I. Novel odorant-binding proteins expressed in the taste tissue of the fly // Chem. Senses. 2002. Vol. 27. N 4. P. 319–332.
14. Buck L., Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition // Cell. 1991. Vol. 65. N 1. P. 175–187.
15. Fan J., Francis F., Liu Y., Chen J.L., Cheng D.F. An overview of odorant-binding protein functions in insect peripheral olfactory reception // Genet. Mol. Res. 2011. Vol. 10. N 4. P. 3056–3069.
16. Benton R., Vannice K.S., Gomez-Diaz C., Vosshall L.B. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila // Cell. 2009. Vol. 136. N 1. P. 149–162.
17. Rogers M.E., Sun M., Lerner M.R., Vogt R.G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins // J. Biol. Chem. 1997. Vol. 272. N 23. P. 14792–14799.
18. Vogt R.G., Riddiford L.M. Pheromone binding and inactivation by moth antennae // Nature. 1981. Vol. 293. N 5828. P. 161–163.
19. Ishida Y., Leal W.S. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme // Proc. Nat. Acad. Sci. U.S.A. 2008. Vol. 105. N 26. P. 9076–9080.
20. Larter N.K., Sun J.S., Carlson J.R. Organization and function of Drosophila odorant binding proteins // eLife. 2016. Vol. 5: e20242.
21. Benton R., Sachse S., Stephen W., Milnick S.W., Vosshall L.B. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo // PLoS Biol. 2006. Vol. 4. N 2: e20.
22. Rimal S., Lee Y. The multidimensional ionotropic receptors of Drosophila melanogaster // Insect Mol. Biol. 2018. Vol. 27. N 1. P. 1–7.
23. Steinbrecht R.A. Pore structures in insect olfactory sensilla: a review of data and concepts // Int. J. Insect Morphol. Embryol. 1997. Vol. 26. N 3–4. P. 229–245.
24. Klein U. Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae) // Insect Biochem. 1987. Vol. 17. N 8. P. 1193–1204.
25. Жуковская М.И. Одорантзависимые изменения поверхностных кутикулярных выделений на антенне таракана Periplaneta americana // Сенсорные системы. 2011. Т. 25. № 1. С. 78–86.
26. Maitani M.M., Allara D.L., Park K.C., Lee S.G., Baker T.C. Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties // Arthropod Struct. Dev. 2010. Vol. 39. N 1. P. 1–16.
27. Chaika S.Yu. Insect olfaction: a hypothesis about the role of liquid-crystalline pore tubules in olfactory sensilla as conductors of information on the nature of signaling molecules // Актуальные проблемы современной науки. Т. 2. № 3 / Материалы трудов участников 12-й Международной телеконференции. Томск: Крокус, 2013. С. 3–6.
28. Leal W.S. Pheromone reception // The Chemistry of pheromones and other semiochemicals II. Topics in current chemistry, vol 240. / Ed. S. Schulz. Berlin, Heidelberg: Springer, 2005. P. 1–36.
29. Pelosi P., Iovinella I., Zhu J., Wang G.R., Dani F.R. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects // Biol. Rev. 2018. Vol. 93. N 1. P. 184–200.
30. Sun J.S., Larter N.K., Chahda J.S., Rioux D., Gumaste A., Carlson J.R. Humidity response depends on the small soluble proteins Obp59a in Drosophila // eLife. 2018. Vol. 7: e39249.
31. Jacquin-July E., Francois M.C., Nagnan-Le M.P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromone gland of Mamestra brassicae // Chem. Senses. 2001. Vol. 26. N 7. P. 833–844.
32. Li S., Picimbon J.F., Li S., Kan Y., Chuanling Q., Zhou J.J., Pelosi P. Multiple functions of an odorant-binding protein in the mosquito Aedes aegypti // Biochem. Biophys. Res. Commun. 2008. Vol. 372. N 3. P. 464–468.
33. Sun Y.L., Huang L.Q., Pelosi P., Wang C.Z. Expression in antennae and reproductive organs suggests a dual role of an odorant-binding protein in two sibling Helicoverpa species // PloS One. 2012. Vol. 7: e30040.
34. Pitts J.R., Liu C., Zhou X., Malpartida J.C., Zwiebel L.J. Odorant receptor-mediated sperm activation in disease vector mosquitoes // Proc. Nat. Acad. Sci. U.S.A. 2014. Vol. 111. N 7. P. 2566–2571.
35. Benoit J.B., Vigneron A., Broderick N.A., Aksoy S., Weiss B.L. Symbiont-induced odorant binding proteins mediate insect host hematopoiesis // eLife. 2017. Vol. 6: e19535.
36. Kiely A., Authier A., Ktalicek A.V., Warr C.G., Newcomb R.D. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells // J. Neurosci. Methods. 2007. Vol. 159. N 2. P. 189–194.
37. Ai M., Blais S., Park J-Y., Min S., Neubert T.A., Suh G.S.B. Ionotropic glutamate receptors IR64a and IR8a form a functional odorant receptor complex in vivo in Drosophila // J. Neurosci. 2013. Vol. 33. N 26. P. 10741–10749.
38. Xu P.X., Atkinson R., Jones D.N.M., Smith D.P. Drosophila OBP LUSH report is required for activity of pheromone-sensitive neurons // Neuron. 2005. Vol. 45. N 2. P. 193–200.
39. Gomez-Diaz C., Reina J.H., Cambillau C., Benton R. Ligands for pheromone-sensing neurons are not conformationally activated odorant binding proteins // PLoS Biol. 2013. Vol. 11. N 4: e1001546.
40. Steinbrecht R.A. Stimulus transport and inactivation in insect olfactory sensilla: functional morphology, tracer experiments, and immunocytochemistry // Nervous systems – Principles of design and function / Ed. R.N. Singh. New Delhi: Wiley Eastern, 1992. P. 417–435.
41. Ando T., Sekine S., Inagaki S., Misaki K., Badel L., Moriya H., Sami M.M., Itakura Y., Chihara T., Kazama H., Yonemura S., Hayashi S. Nanopore formation in the cuticle of an insect olfactory sensillum // Curr. Biol. 2019. Vol. 29. N 9. P. 1512–1520.
42. Locke M. Permeability of insect cuticle to water and lipids // Science. 1965. Vol. 147. N 3655. P. 295–298.
43. Brown G.H., Wolken J.J. Liquid crystals and biological structures. N.Y.: Academic Press, 1979. 200 pp.
44. Леонович С.А. Сенсорные системы паразитических клещей. СПб.: Наука, 2005. 235 с.
45. Chandrasekhar S. Liquid crystals. 2nd edition. London, N.Y.: Cambridge Univ. Press, 1992. 460 pp.
46. Woltman S.J., Jay D.G., Crawford G.P. Liquidcrystal materials find a new order in biomedical applications // Nat. Mater. 2007. Vol. 6. N 12. P. 929–938.
47. Smalyukh I.I. Liquid crystals enable chemoresponsive reconfigurable colloidal self-assembly // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 9. P. 3945–3946.
48. Roling L.T., Scaranto J., Herron J.A, Yu H., Choi S., Abbott N.L., Mavrikakis M. Towards first-principles molecular design of liquid crystal-based chemoresponsive systems // Nature Commun. 2016. Vol. 7: 13338.
49. Ostrovsky M.A. Molecular physiology of visual pigment rhodopsin // Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2012. Vol. 6. N 2. P. 128–138.
50. Попов А.В. Акустическое поведение и слух насекомых. Л.: Наука, 1985. 256 с.
51. Жантиев Р.Д. Биоакустика насекомых. М.: Изд-во Моск. ун-та, 1981. 256 с.
52. Ishay J.S., Shimony T.(B.), Arcan L. The presence of statocysts and statoliths in social wasps (Hymenoptera, Vespinae) // Life Sci. 1983. Vol. 32. N 15. P. 1711–1719.
53. Hsu C.Y., Li C.W. Magnetoreception in honeybees // Science. 1994. Vol. 265. N 5. P. 95–97.
54. Altner H., Loftus R. Ultrastructure and function of insect thermo- and hygroreceptors // Annu. Rev. Entomol. 1985. Vol. 30. P. 273–295.
55. Steinbrecht R.A., Müller B. The thermo-/ hygrosensitive sensilla of the silkmoth, Bombyx mori: morphological changes after dry- and moist-adaptation // Cell Tissue Res. 1991. Vol. 266. N 3. P. 441–456.
56. Yokohari F. Hygroreceptor mechanism in the antenna of the cockroach Periplaneta // J. Comp. Physiol. 1978. Vol. 124. P. 53–60.
57. Altner H., Tichy H., Altner I. Lamellated outer dendritic segments of a sensory cell within a poreless thermo- and hygroreceptive sensillum of the insect Carausius morosus // Cell Tissue Res. 1978. Vol. 191. N 2. P. 287–304.
58. Steinbrecht R.A. Receptor membrane substructure and sensory cell contacts // Cell Tissue Res. 1989. Vol. 255. N 1. P. 49–57.
59. Vondran T., Apel K.-H., Schmitz H. The infrared receptor of Melanophila acuminata De Geer (Coleoptera: Buprestidae): Ultrastructural study of a unique insect thermoreceptor and its possible descent from a hair mechanoreceptor // Tissue Cell. 1995. Vol. 27. N 6. P. 645–658.
60. Schmitz A., Schmitz H. Cuticle as functional interface in insect infrared receptors // Functional surface in biology. III. Biologically-inspired systems, vol. 10 / Eds. S.N. Gorb and E.V. Gorb. Berlin: Springer, 2018. P. 3–25.
61. Schneider E.S., Schmitz A., Schmitz H. Concept of an active amplification mechanism in the infrared organ of pyrophilous Melanophila beetles // Front. Physiol. 2015. Vol. 6: 391.
62. Chen C., Buhl E., Xu M., Croset V., Rees J.S., Lilley K.S., Benton R., Hodge J.J., Stanewsky R. Drosophila ionotropic receptor 25a mediates circadian clock resetting by temperature // Nature. 2015. Vol. 527. N 7579. P. 516–520.
63. Knecht Z.A., Silbering A.F., Ni L., Klein M., Budelli G., Bell R., Abuin L., Ferrer A.J., Samuel A.D., Benton R., Garrity P.A. Distinct combinations of variant ionotropic glutamate receptors mediate thermosensation and hygrosensation in Drosophila // eLife. 2016. Vol. 5: e17879.
64. Ni L., Klein M., Svec K.V., Budelli G., Chang E.C., Ferrer A.J., Benton R., Samuel A.D.T., Garrity P.A. The ionotropic receptors IR21a and IR 25a mediate cool sensing in Drosophila // eLife. 2016. Vol. 5: e13254.
65. Nishino H., Yamashita S., Yamazaki Y., Nishikawa M., Yokohari P., Mizunami M. Projection neurons originating from thermo- and hygrosensory glomeruli in the antennal lobe of the cockroach // J. Comp. Neurology. 2003. Vol. 455. N 1. P. 40–55.
Review
For citations:
Chaika S.Yu. The role of peripheral environment of neuronal receptors in the perception of stimuli by sensory organs of insects: facts and hypotheses. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):200-209. (In Russ.)