Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Нейтрофильные внеклеточные ловушки: новые аспекты

Полный текст:

Аннотация

Нейтрофилы являются «первой линией» защиты от патогенов в очаге воспаления, где они используют такие эффекторные функции, как фагоцитоз, дегрануляцию и образование активных форм кислорода (АФК). В 2004 г. Артуро Циклински охарактеризовал еще одну эффекторную функцию нейтрофилов – выброс нейтрофильных внеклеточных ловушек, или NET (neutrophil extracellular traps). NET представляют собой модифицированный хроматин, «декорированный» бактерицидными белками гранул, ядра и цитоплазмы. Выброс NET может активироваться разнообразными физиологическими и фармакологическими стимулами и зависит от АФК, основным источником которых является NADPH-оксидаза. В процессе активации NET происходят выход бактерицидных компонентов гранул в цитоплазму, модификация гистонов, ведущая к деконденсации хроматина, разрушение ядерной оболочки и цитоплазматической мембраны при участии белка газдермина D и, наконец, выброс хроматина за пределы клетки. Вместе с тем, неконтролируемое образование NET является провоцирующим фактором развития многих воспалительных и аутоиммунных заболеваний. NET были обнаружены при таких аутоиммунных заболеваниях, как системная красная волчанка, ревматоидный артрит, псориаз и васкулиты; NET участвуют в патогенезе сердечно-сосудистых, легочных и онкологических заболеваний. В настоящем обзоре обсуждаются основные представления о механизмах образования NET, а также их роль в физиологических процессах и патогенезе ряда заболеваний, включая COVID-19.

Об авторе

Н. В. Воробьева
Кафедра иммунологии, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

Воробьева Нина Викторовна – канд. биол. наук, ст. науч. сотр. кафедры иммунологии
биологического факультета МГУ им. М.В. Ломоносова

119234, г. Москва, Ленинские горы, д. 1, стр. 12

Тел.: 8-495-939-46-46 



Список литературы

1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria // Science. 2004. Vol. 303. N 5663. P. 1532–1535.

2. Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death // Sci. STKE. 2007. Vol. 2007. N 379: pe11.

3. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease // Nat. Rev. Immunol. 2018. Vol. 18. N 2. P. 134–147.

4. Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., Simon H.U. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense // Nat. Med. 2008. Vol. 14. N 9. P. 949–953.

5. Morshed M., Hlushchuk R., Simon D., Walls A.F., Obata-Ninomiya K., Karasuyama H., Djonov V., Eggel A., Kaufmann T., Simon H.U., Yousefi S. NADPH oxidaseindependent formation of extracellular DNA traps by basophils // J. Immunol. 2014. Vol. 192. N 11. P. 5314–5323.

6. von Köckritz-Blickwede M., Goldmann O., Thulin P., Heinemann K., Norrby-Teglund A., Rohde M., Medina E. Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation // Blood. 2008. Vol. 111. N 6. P. 3070–3080.

7. Ingelsson B., Söderberg D., Strid T., Söderberg A., Bergh A.C., Loitto V., Lotfi, K., Segelmark M., Spyrou G., Rosén A. Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of Class C // Proc. Natl. Acad. Sci. U.S.A. 2018. Vol. 115. N 3. P. E478–E487.

8. Granger V., Faille D., Marani V., Noël B., Gallais Y., Szely N., Flament H., Pallardy M., Chollet-Martin S., de Chaisemartin L. Human blood monocytes are able to form extracellular traps // J. Leukoc. Biol. 2017. Vol. 102. N 3. P. 775–781.

9. Chow O.A., von Köckritz-Blickwede M., Bright A.T., Hensler M.E., Zinkernagel A.S., Cogen A.L., Gallo R.L., Monestier M., Wang Y., Glass C.K., Nizet V. Statins enhance formation of phagocyte extracellular traps // Cell Host Microbe. 2010. Vol. 8. N 5. P. 445–454.

10. Zhang X., Zhuchenko O., Kuspa A., Soldati T. Social amoebae trap and kill bacteria by casting DNA nets // Nat. Commun. 2016. Vol. 7: 10938.

11. Hawes M., Allen C., Turgeon B.G., CurlangoRivera G., Minh Tran T., Huskey D.A., Xiong Z. Root border cells and their role in plant defense // Annu. Rev. Phytopathol. 2016. Vol. 54. P. 143–161.

12. Belambri S.A., Rolas L., Raad H., Hurtado-Nedelec M., Dang P.M., El-Benna J. NADPH oxidase activation in neutrophils: Role of the phosphorylation of its subunits // Eur. J. Clin. Invest. 2018. Vol. 48. Suppl. 2: e12951.

13. Hakkim A., Fuchs T.A., Martinez N.E., Hess S., Prinz H., Zychlinsky A., Waldmann H. Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation // Nat. Chem. Biol. 2011. Vol. 7. N 2. P. 75–77.

14. Bianchi M., Hakkim A., Brinkmann V., Siler U., Seger R.A., Zychlinsky A., Reichenbach J. Restoration of NET formation by gene therapy in CGD controls aspergillosis // Blood. 2009. Vol. 114. N 13. P. 2619–2622.

15. Metzler K.D., Fuchs T.A., Nauseef W.M., Reumaux D., Roesler J., Schulze I., Wahn V., Papayannopoulos V., Zychlinsky A. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity // Blood. 2011. Vol. 117. N 3. P. 953–959.

16. Metzler K.D., Goosmann C., Lubojemska A., Zychlinsky A., Papayannopoulos V. A myeloperoxidasecontaining complex regulates neutrophil elastase release and actin dynamics during NETosis // Cell Rep. 2014. Vol. 8. N 3. P. 883–896.

17. Anzilotti C., Pratesi F., Tommasi C., Migliorini P. Peptidylarginine deiminase 4 and citrullination in health and disease // Autoimmun. Rev. 2010. Vol. 9. N 3. P. 158–160.

18. Sollberger G., Choidas A., Burn G.L., Habenberger P., Di Lucrezia R., Kordes S., Menninger S., Eickhoff J., Nussbaumer P., Klebl B., Krüger R., Herzig A., Zychlinsky A. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps // Science Immunol. 2018. Vol. 3: eaar6689.

19. Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity // Autoimmun. Rev. 2015. Vol. 14. N 7. P. 633–640.

20. Li P., Li M., Lindberg M.R., Kennett M.J., Xiong N., Wang Y. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps // J. Exp. Med. 2010. Vol. 207. N 9. P. 1853–1862.

21. Douda D.N., Khan M.A., Grasemann H., Palaniyar N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx // Proc. Natl. Acad. Sci. U.S.A. 2015. Vol. 112. N 9. P. 2817–2822.

22. Mahomed A.G., Anderson R. Activation of human neutrophils with chemotactic peptide, opsonized zymosan and the calcium ionophore A23187, but not with a phorbol ester, is accompanied by efflux and store-operated influx of calcium // Inflammation. 2000. Vol. 24. N 6. P. 559–569.

23. Hu T.H., Bei L., Qian Z.M., Shen X. Intracellular free calcium regulates the onset of the respiratory burst of human neutrophils activated by phorbol myristate acetate // Cell. Signal. 1999. Vol. 11. N 5. P. 355–360.

24. Vorobjeva N.V., Chernyak B.V. NADPH oxidase modulates Ca2+-dependent formation of neutrophil extracellular traps // Moscow Univ. Biol. Sci. Bull. 2020. Vol. 75. N 3. P. 104–109.

25. Shishikura K., Horiuchi T., Sakata N., Trinh D.A., Shirakawa R., Kimura T., Asada Y., Horiuchi H. Prostaglandin E2 inhibits neutrophil extracellular trap formation through production of cyclic AMP // Br. J. Pharmacol. 2016. Vol. 173. N 2. P. 319–331.

26. Healy L.D., Puy C., Fernández J.A, Mitrugno A., Keshari R.S., Taku N.A., Chu T.T., Xu X., Gruber A., Lupu F., Griffin J.H., McCarty O.J.T. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo // J. Biol. Chem. 2017. Vol. 292. N 21. P. 8616–8629.

27. Amulic B., Knackstedt S.L., Abu Abed U., Deigendesch N., Harbort C.J., Caffrey B.E., Brinkmann V., Heppner F.L., Hinds P.W., Zychlinsky A. Cell-cycle proteins control production of neutrophil extracellular traps // Dev. Cell. 2017. Vol. 43. N 4. P. 449–462.e5.

28. Kenny E.F., Herzig A., Krüger R., Muth A., Mondal S., Thompson P.R., Brinkmann V., Bernuth H.V., Zychlinsky A. Diverse stimuli engage different neutrophil extracellular trap pathways // eLife. 2017. Vol. 6: e24437.

29. Neeli I., Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release // Front. Immunol. 2013. Vol. 4: 38.

30. Lood C., Blanco L.P., Purmalek M.M., CarmonaRivera C., De Ravin S.S., Smith C.K., Malech H.L., Ledbetter J.A., Elkon K.B., Kaplan M.J. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease // Nat. Med. 2016. Vol. 22. N 2. P. 146–153.

31. Vorobjeva N., Galkin I., Pletjushkina O., Golyshev S., Zinovkin R., Prikhodko A., Pinegin V., Kondratenko I., Pinegin B., Chernyak B. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils // Biochim. Biophys. Acta. Mol. Basis. Dis. 2020. Vol. 1866. N 5: 165664.

32. Geiszt M., Kapus A., Ligeti E. Chronic granulomatous disease: more than the lack of superoxide? // J. Leukoc. Biol. 2001. Vol. 69. N 2. P. 191–196.

33. Bernardi P., Rasola A., Forte M., Lippe G. The mitochondrial permeability transition pore: channel formation by F-ATP synthase, integration in signal transduction, and role in pathophysiology // Physiol. Rev. 2015. Vol. 95. P. 1111–1155.

34. Wildhagen K.C., García de Frutos P., Reutelingsperger C.P., Schrijver R., Aresté C., OrtegaGómez A., Deckers N.M., Hemker H.C., Soehnlein O., Nicolaes G.A. Nonanticoagulant heparin prevents histonemediated cytotoxicity in vitro and improves survival in sepsis // Blood. 2014. Vol. 123. N 7. P. 1098–1101.

35. Bannister A.J., Kouzarides T. Regulation of chromatin by histone modifications // Cell Res. 2011. Vol. 21. N 3. P. 381–395.

36. Lewis H.D., Liddle J., Coote J.E., et al. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation // Nat. Chem. Biol. 2015. Vol. 11. N 3. P. 189–191.

37. Hamam H.J., Khan M.A., Palaniyar N. Histone acetylation promotes neutrophil extracellular trap formation // Biomolecules. 2019. Vol. 9. N 1: 32.

38. Clark S.R., Ma A.C., Tavener S.A., et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood // Nat. Med. 2007. Vol. 13. N 4. P. 463–469.

39. Yipp B.G., Petri B., Salina D., Jenne C.J., Scott B.N.V., Zbytnuik L.D., Pittman K., Asaduzzaman M., Wu K., Meijndert H.C., Malawista S.E., de Boisfleury Chevance A., Zhang K., Conly J., Kubes P. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo // Nat. Med. 2012. Vol. 18. N 9. P. 1386–1393.

40. Pilsczek F.H., Salina D., Poon K.K., Fahey C., Yipp B.G., Sibley C.D., Robbins S.M., Green F.H.Y., Surette M.G., Sugai M., Bowden M.G., Hussain M., Zhang K., Kubes P. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus // J. Immunol. 2010. Vol. 185. N 12. P. 7413–7425.

41. Yousefi S., Mihalache C., Kozlowski E., Schmid I., Simon H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps // Cell. Death. Differ. 2009. Vol. 16. N 11. P. 1438–1444.

42. Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens // Nat. Immunol. 2014. Vol. 15. N 11. P. 1017–1025.

43. Wartha F., Beiter K., Albiger B., Fernebro J., Zychlinsky A., Normark S., Henriques-Normark B. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps // Cell. Microbiol. 2007. Vol. 9. N 5. P. 1162–1171.

44. Wilton M., Halverson T.W.R., CharronMazenod L., Parkins M.D., Lewenza S. Secreted phosphatase and deoxyribonuclease are required by Pseudomonas aeruginosa to defend against neutrophil extracellular traps // Infect. Immun. 2018. Vol. 86. N 9: e00403-18.

45. Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process // J. Immunol. 2013. Vol. 191. N 5. P. 2647–2656.

46. Cortjens B., de Boer O.J., de Jong R., Antonis A.F., Sabogal Pineros Y.S., Lutter R., van Woensel J.B., Reinout A., Bem R.A. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease // J. Pathol. 2016. Vol. 238. N 3. P. 401–411.

47. Hamaguchi S., Seki M., Yamamoto N., Hirose T., Matsumoto N., Irisawa T., Takegawa R., Shimazu T., Tomono K. Case of invasive nontypable Haemophilus influenzae respiratory tract infection with a large quantity of neutrophil extracellular traps in sputum // J. Inflamm. Res. 2012. Vol. 5. P. 137–140.

48. Dicker A.J., Crichton M.L., Pumphrey E.G., et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease // J. Allergy Clin. Immunol. 2018. Vol. 141. N 1. P. 117–127.

49. Papayannopoulos V., Staab D., Zychlinsky A. Neutrophil elastase enhances sputum solubilization in cystic fibrosis patients receiving DNase therapy // PLoS One. 2011. Vol. 6. N 12: e28526.

50. Caudrillier A., Kessenbrock K., Gilliss B.M., Nguyen J.X., Marques M.B., Monestier M., Toy P., Werb Z., Looney M.R. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury // J. Clin. Invest. 2012. Vol. 122. N 7. P. 2661–2671.

51. Bendib I., de Chaisemartin L., Granger V., Schlemmer F., Maitre B., Hüe S., Surenaud M., BeldiFerchiou A., Carteaux G., Razazi K., Chollet-Martin S., Dessap A.M., de Prost N. Neutrophil extracellular traps are elevated in patients with pneumonia-related acute respiratory distress syndrome // Anesthesiology. 2019. Vol. 130. N 4. P. 581–591.

52. Lv X., Wen T., Song J., Xie D., Wu L., Jiang X., Jiang P., Wen Z. Extracellular histones are clinically relevant mediators in the pathogenesis of acute respiratory distress syndrome // Respir. Res. 2017. Vol. 18. N 1: 165.

53. Pedersen S.F., Ho Y.C. SARS-CoV-2: a storm is raging // J. Clin. Invest. 2020. Vol. 130. N 5. P. 2202–2205.

54. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395. N 10229. P. 1033–1034.

55. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., Blair C.N., Weber A., Barnes B.J., Egeblad M., Woods R.J., Kanthi Y., Knight J.S. Neutrophil extracellular traps in COVID-19 // JCI Insight. 2020. Vol. 5. N 11: e138999.

56. Martinod K., Wagner D.D. Thrombosis: tangled up in NETs // Blood. 2014. Vol. 123. N 18. P. 2768–2776.

57. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA traps promote thrombosis // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 36. P. 15880–15885.

58. Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. Neutrophil extracellular traps promote deep vein thrombosis in mice // J. Thromb. Haemost. 2012. Vol. 10. N 1. P. 136–144.

59. Jimenez-Alcazar M., Kim N., Fuchs T.A. Circulating extracellular DNA: cause or consequence of thrombosis? // Semin. Thromb. Hemost. 2017. Vol. 43. N 6. P. 553–561.

60. Novotny J., Oberdieck P., Titova A., et al. Thrombus NET content is associated with clinical outcome in stroke and myocardial infarction // Neurology. 2020. Vol. 94. N 22. P. e2346–e2360.

61. Gloude N.J., Khandelwal P., Luebbering N., Lounder D.T., Jodele S., Alder M.N., Lane A., Wilkey A., Lake K.E., Litts B., Davies S.M. Circulating dsDNA, endothelial injury, and complement activation in thrombotic microangiopathy and GVHD // Blood. 2017. Vol. 130. N 10. P. 1259–1266.

62. Borissoff J.I., Joosen I.A., Versteylen M.O., Brill A., Fuchs T.A., Savchenko A.S., Gallant M., Martinod K., Ten Cate H., Hofstra L., Crijns H.J., Wagner D.D., Kietselaer B.L.J.H. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state // Arterioscler. Thromb. Vasc. Biol. 2013. Vol. 33. N 8. P. 2032–2040.

63. Yalavarthi S., Gould T.J., Rao A.N., Mazza L.F., Morris A.E., Nunez-Alvarez C., Hernandez-Ramirez D., Bockenstedt P.L., Liaw P.C., Cabral A.R., Knight J.S. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome // Arthritis Rheumatol. 2015. Vol. 67. N 11. P. 2990–3003.

64. Leppkes M., Maueroder C., Hirth S., et al. Externalized decondensed neutrophil chromatin occludes pancreatic ducts and drives pancreatitis // Nat. Commun. 2016. Vol. 7: 10973.

65. Merza M., Hartman H., Rahman M., Hwaiz R., Zhang E., Renstrom E., Luo L., Morgelin M., Regner S., Thorlacius H. Neutrophil extracellular traps induce trypsin activation, inflammation, and tissue damage in mice with severe acute pancreatitis // Gastroenterology. 2015. Vol. 149. N 7. P. 1920–1931.e8.

66. Schauer C., Janko C., Munoz L.E., et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines // Nat. Med. 2014. Vol. 20. N 5. P. 511–527.

67. Park J., Wysocki R.W., Amoozgar Z., et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps // Sci. Transl. Med. 2016. Vol. 8. N 361: 361ra138.

68. Levi M. Management of cancer-associated disseminated intravascular coagulation // Thromb. Res. 2016. Vol. 140. Suppl. 1. P. S66–S70.

69. Guglietta S., Chiavelli A., Zagato E., Krieg C., Gandini S., Ravenda P.S., Bazolli B., Lu B., Penna G., Rescigno M. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis // Nat. Commun. 2016. Vol. 7: 11037.

70. Breitbach C.J., De Silva N.S., Falls T.J., et al. Targeting tumor vasculature with an oncolytic virus // Mol. Ther. 2011. Vol. 19. N 5. P. 886–894.

71. Gupta S., Kaplan M.J. The role of neutrophils and NETosis in autoimmune and renal diseases // Nat. Rev. Nephrol. 2016. Vol. 12. N 7. P. 402–413.

72. Moore S., Juo H.H., Nielsen C.T., Tyden H., Bengtsson A.A., Lood C. Role of neutrophil extracellular traps regarding patients at risk of increased disease activity and cardiovascular comorbidity in systemic lupus erythematosus // J. Rheumatol. 2019. Vol. 47. N 10: 190875.

73. Pratesi F., Dioni I., Tommasi C., Alcaro M.C., Paolini I., Barbetti F., Boscaro F., Panza F., Puxeddu I., Rovero P., Migliorini P. Antibodies from patients with rheumatoid arthritis target citrullinated histone 4 contained in neutrophils extracellular traps // Ann. Rheum. Dis. 2014. Vol. 73. N 7. P. 1414–1422.

74. Falk R.J., Jennette J.C. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis // N. Engl. J. Med. 1988. Vol. 318. N 25. P. 1651–1657.

75. Al-Mayouf S.M., Sunker A., Abdwani R., et al. Lossof-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus // Nat. Genet. 2011. Vol. 43. N 12. P. 1186–1188.

76. Carmona-Rivera C., Carlucci P.M., Moore E., et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis // Sci. Immunol. 2017. Vol. 2. N 10: eaag3358.

77. Hakkim A., Furnrohr B.G., Amann K., Laube B., Abed U.A., Brinkmann V., Herrmann M., Voll R.E., Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis // Proc. Natl. Acad. Sci. U.S.A. 2010. Vol. 107. N 21. P. 9813–9818.

78. O’Sullivan K.M., Lo C.Y., Summers S.A., Elgass K.D., McMillan P.J., Longano A., Ford S.L., Gan P.Y., Kerr P.G., Kitching A.R., Holdsworth S.R. Renal participation of myeloperoxidase in antineutrophil cytoplasmic antibody (ANCA)-associated glomerulonephritis // Kidney Int. 2015. Vol. 88. N 5. P. 1030–1046.

79. Kumar S.V., Kulkarni O.P., Mulay S.R., Darisipudi M.N., Romoli S., Thomasova D., Scherbaum C.R., Hohenstein B., Hugo C., Müller S., Liapis H., Anders H.J. Neutrophil extracellular trap-related extracellular histones cause vascular necrosis in severe GN // J. Am. Soc. Nephrol. 2015. Vol. 26. N 10. P. 2399–2413.

80. Park S.Y., Shrestha S., Youn Y.J., et al. Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis // Am. J. Respir. Crit. Care Med. 2017. Vol. 196. N 5. P. 577–589.

81. Meng W., Paunel-Görgülü A., Flohé S., Hoffmann A., Witte I., MacKenzie C., Baldus S.E., Windolf J., Lögters T.T. Depletion of neutrophil extracellular traps in vivo results in hypersusceptibility to polymicrobial sepsis in mice // Crit. Care. 2012. Vol. 16. N 4: R137.

82. Saffarzadeh M., Juenemann C., Queisser M.A., Lochnit G., Barreto G., Galuska S.P., Lohmeyer J., Preissner K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones // PLoS One. 2012. Vol. 7. N 2: e32366.

83. Weber C. Liver: neutrophil extracellular traps mediate bacterial liver damage // Nat. Rev. Gastroenterol. Hepatol. 2015. Vol. 12. N 5: 251.

84. Xu J., Zhang X., Pelayo R., Monestier M., Ammollo C.T., Semeraro F., Taylor F.B., Esmon N.L., Lupu F., Esmon C.T. Extracellular histones are major mediators of death in sepsis // Nat. Med. 2009. Vol. 15. N 11. P. 1318–1321.

85. Czaikoski P.G., Mota J.M., Nascimento D.C., Sonego F., Castanheira F.V., Melo P.H., Scortegagna G.T., Silva R.L., Barroso-Sousa R., Souto F.O., Pazin-Filho A., Figueiredo F., Alves-Filho J.C., Cunha F.Q. Neutrophil extracellular traps induce organ damage during experimental and clinical sepsis // PLoS One. 2016. Vol. 11. N 2: e0148142.

86. Pietronigro E.C., Bianca V.D., Zenaro E., Constantin G. NETosis in Alzheimer’s disease // Front. Immunol. 2017. Vol. 8: 211.

87. Lachowicz-Scroggins M.E., Dunican E.M., Charbit A.R., et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma // Am. J. Respir. Crit. Care Med. 2019. Vol. 199. N 9. P. 1076–1085.

88. Zhang T., Mei Y., Dong W., Wang J., Huang F., Wu J. Evaluation of protein arginine deiminase-4 inhibitor in TNBS-induced colitis in mice // Int. Immunopharmacol. 2020. Vol. 84: 106583.

89. Dinallo V., Marafini I., Di Fusco D., Laudisi F., Franzè E., Di Grazia A., Figliuzzi M.M., Caprioli F., Stolfi C., Monteleone I., Monteleone G. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis // J. Crohns Colitis. 2019. Vol. 13. N 6. P. 772–784.

90. Gupta A.K., Hasler P., Holzgreve W., Gebhardt S., Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia // Hum. Immunol. 2005. Vol. 66. N 11. P. 1146–1154.

91. Vecchio F, Lo Buono N, Stabilini A, et al. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes // JCI Insight. 2018. Vol. 3. N 18: e122146.

92. Zhou J., Yang Y., Gan T., Li Y., Hu F., Hao N., Yuan B., Chen Y., Zhang M. Lung cancer cells release high mobility group box 1 and promote the formation of neutrophil extracellular traps // Oncol. Lett. 2019. Vol. 18. N 1. P. 181–188.

93. Short K.R., von Köckritz-Blickwede M., Langereis J.D., Chew K.Y., Job E.R., Armitage C.W., Hatcher B., Fujihashi K., Reading P.C., Hermans P.W., Wijburg O.L., Diavatopoulos D.A. Antibodies mediate formation of neutrophil extracellular traps in the middle ear and facilitate secondary pneumococcal otitis media // Infect. Immun. 2014. Vol. 82. N 1. P. 364–370.

94. Hwang J.W., Kim J.H., Kim H.J., Choi I.H., Han H.M., Lee K.J., Kim T.H., Lee S.H. Neutrophil extracellular traps in nasal secretions of patients with stable and exacerbated chronic rhinosinusitis and their contribution to induce chemokine secretion and strengthen the epithelial barrier // Clin. Exp. Allergy. 2019. Vol. 49. N 10. P. 1306–1320.

95. Tibrewal S., Ivanir Y., Sarkar J., NayebHashemi N., Bouchard C.S., Kim E., Jain S. Hyperosmolar stress induces neutrophil extracellular trap formation: implications for dry eye disease // Invest. Ophthalmol. Vis. Sci. 2014. Vol. 55. N 12. P. 7961–7969.

96. Shan Q., Dwyer M., Rahman S., Gadjeva M. Distinct susceptibilities of corneal Pseudomonas aeruginosa clinical isolates to neutrophil extracellular trap-mediated immunity // Infect. Immun. 2014. Vol. 82. N 10. P. 4135–4143.

97. Jin X., Zhao Y., Zhang F., Wan T., Fan F., Xie X., Lin Z. Neutrophil extracellular traps involvement in corneal fungal infection // Mol. Vis. 2016. Vol. 22. P. 944–952.

98. Magán-Fernández A., Al-Bakri S.M., O’Valle F., Benavides-Reyes C., Abadía-Molina F., Mesa F. Neutrophil extracellular traps in periodontitis // Cells. 2020. Vol. 9. N 6: E1494.

99. Menegazzo L., Ciciliot S., Poncina N., Mazzucato M., Persano M., Bonora B., Albiero M., de Kreutzenberg S.V., Avogaro A., Fadini G.P. NETosis is induced by high glucose and associated with type 2 diabetes // Acta Diabetol. 2015. Vol. 52. N 3. P. 497–503.


Для цитирования:


Воробьева Н.В. Нейтрофильные внеклеточные ловушки: новые аспекты. Вестник Московского университета. Серия 16. Биология. 2020;75(4):210-225.

For citation:


Vorobjeva N.V. Neutrophil extracellular traps: new aspects. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):210-225. (In Russ.)

Просмотров: 29


ISSN 0137-0952 (Print)