Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Клетки китайского хомячка в биотехнологических и геронтологических исследованиях

Полный текст:

Аннотация

Одним из наиболее часто используемых в геронтологии модельных объектов являются дрожжи, в первую очередь – Saccharomyces cerevisiae. Накоплено значительное количество данных, позволяющих считать, что в претерпевающих хронологическое, или «стационарное», старение дрожжах возникают нарушения, сходные с возрастными нарушениями в клетках многоклеточного организма. Однако дрожжи, как и любые объекты исследований, не лишены недостатков – в частности, они, хотя и являются эукариотами, в эволюционном плане отстоят далеко от млекопитающих, что накладывает ограничение на изучение у дрожжей неконсервативных метаболических путей. В некоторых случаях в экспериментах с хронологической моделью лучше использовать клетки млекопитающих – например, клетки китайского хомячка. Они широко используются в промышленности для получения моноклональных антител и рекомбинантных белков. Значительная доля этих продуктов образуется после остановки пролиферации, которая инициирует хронологическое старение культуры. Накопленные данные об особенностях метаболизма клеток, роста культуры и продолжительности ее функциональной жизни являются крайне ценными для геронтологов. Обмен информацией между двумя этими направлениями – биотехнологическим и геронтологическим – будет полезен обеим сторонам.

Об авторе

Г. В. Моргунова
Сектор эволюционной цитогеронтологии, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

Моргунова Галина Васильевна – канд. биол. наук, науч. сотр. сектора эволюционной цитогеронтологии биологического факультета МГУ

119234, г. Москва, Ленинские горы, д. 1, стр. 12

Тел.: 8-495-939-15-90 



Список литературы

1. Kaeberlein M., Burtner C.R., Kennedy B.K. Recent developments in yeast aging // PLoS Genet. 2007. Vol. 3. N 5: e84.

2. Longo V.D., Shadel G.S., Kaeberlein M., Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae // Cell Metab. 2012. Vol. 16. N 1. P. 18–31.

3. Aging research in yeast // Subcellular Biochemistry / Ed. M. Breitenbach, S.M. Jazwinski, and P. Laun. Dordrecht; Heidelberg; London; N.Y.: Springer, 2012. 368 pp.

4. MacLean M., Harris N., Piper P.W. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms // Yeast. 2001. Vol. 18. N 6. P. 499–509.

5. Fabrizio P., Longo V.D. The chronological life span of Saccharomyces cerevisiae // Aging Cell. 2003. Vol. 2. N 2. P. 73–81.

6. Barnes D.E., Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells // Annu. Rev. Genet. 2004. Vol. 38. P. 445–476.

7. Faucher F., Duclos S., Bandaru V., Wallace S.S., Doublié S. Crystal structures of two archaeal 8-oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction // Structure. 2009. Vol. 17. N 5. P. 703–712.

8. Herrera-Cruz M.S., Simmen T. Of yeast, mice and men: MAMs come in two flavors // Biol. Direct. 2017. Vol. 12: 3.

9. Morgunova G.V., Klebanov A.A. Age-Related AMPactivated protein kinase alterations: From cellular energetics to longevity // Cell Biochem. Funct. 2019. Vol. 37. N 3. P. 169–176.

10. Zimmermann A., Hofer S., Pendl T., Kainz K., Madeo F., Carmona-Gutierrez D. Yeast as a tool to identify antiaging compounds // FEMS Yeast Res. 2018. Vol. 18. N 6: foy020.

11. Chartrain M., Chu L. Development and production of commercial therapeutic monoclonal antibodies in Mammalian cell expression systems: an overview of the current upstream technologies // Curr. Pharm. Biotechnol. 2008. Vol. 9. N 6. P. 447–467.

12. Jeong D.W., Cho I.T., Kim T.S., Bae G.W., Kim I.H., Kim I.Y. Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism // Mol. Cell. Biochem. 2006. Vol. 284. N 1–2. P. 1–8.

13. Lai T., Yang Y., Ng S.K. Advances in mammalian cell line development technologies for recombinant protein production // Pharmaceuticals. 2013. Vol. 6. N 5. P. 579–603.

14. Lewis N.E., Liu X., Li Y., Nagarajan H., Yerganian G., O’brien E., Bordbar A., Roth A.M., Rosenbloom J., Bian C., Xie M. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome // Nat. Biotechnol. 2013. Vol. 31. N 8. P. 759–765.

15. Fischer S., Handrick R., Otte K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives // Biotechnol. Adv. 2015. Vol. 33. N 8. P. 1878–1896.

16. Brown A.J., James D.C. Precision control of recombinant gene transcription for CHO cell synthetic biology // Biotechnol. Adv. 2016. Vol. 34. N 5. P. 492–503.

17. Golabgir A., Gutierrez J.M., Hefzi H., Li S., Palsson B.O., Herwig C., Lewis N.E. Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow // Biotechnol. Adv. 2016. Vol. 34. N 5. 21–633.

18. Hefzi H., Ang K.S., Hanscho M., Bordbar A., Ruckerbauer D., Lakshmanan M., Orellana C.A., BaycinHizal D., Huang Y., Ley D., Martinez V.S. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism // Cell Systems. 2016. Vol. 3. N 5. P. 434–443.

19. Kim J.Y., Kim Y.G., Lee G.M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential // Appl. Microbiol. Biotechnol. 2012. Vol. 93. N 3. P. 917–930.

20. Altamirano C., Paredes C., Cairo J.J., Godia F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine // Biotechnol. Progr. 2000. Vol. 16. N 1. P. 69–75.

21. Kim S.H., Lee G.M. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44) // Appl. Microbiol. Biot. 2007. Vol. 76. N 3. P. 659–665.

22. Li J., Wong C.L., Vijayasankaran N., Hudson T., Amanullah A. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance // Biotechnol. Bioeng. 2012. Vol. 109. N 5. P. 1173–1186.

23. Toussaint C., Henry O., Durocher Y. Metabolic engineering of CHO cells to alter lactate metabolism during fedbatch cultures // J. Biotechnol. 2016. Vol. 217. P. 122–131.

24. Brunner M., Doppler P., Klein T., Herwig C., Fricke J. Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes // Eng. Life Sci. 2018. Vol. 18. N 3. P. 204–214.

25. Zhou M., Crawford Y., Ng D., Tung J., Pynn A.F., Meier A., Yuk I.H., Vijayasankaran N., Leach K., Joly J., Snedecor B. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases // J. Biotechnol. 2011. Vol. 153. N 1–2. P. 27–34.

26. Yip S.S., Zhou M., Joly J., Snedecor B., Shen A., Crawford Y. Complete knockout of the lactate dehydrogenase A gene is lethal in pyruvate dehydrogenase kinase 1, 2, 3 down-regulated CHO cells // Mol. Biotechnol. 2014. Vol. 56. N 9. P. 833–838.

27. Noh S.M., Park J.H., Lim M.S., Kim J.W., Lee G.M. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells // App. Microbiol. Biotechnol. 2017. Vol. 101. N 3. P. 1035–1045.

28. Oguchi S., Saito H., Tsukahara M., Tsumura H. pH Condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture // Cytotechnology. 2006. Vol. 52. N 3. P 199–207.

29. Kim Y.J., Baek E., Lee J.S., Lee G.M. Autophagy and its implication in Chinese hamster ovary cell culture // Biotechnol. Lett. 2013. Vol. 35. N 11. P. 1753–1763.

30. Fomina-Yadlin D., Gosink J.J., McCoy R., Follstad B., Morris A., Russell C.B., McGrew J.T. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines // Biotechnol. Bioeng. 2014. Vol. 111. N 5. P. 965–979.

31. Yoon S.K., Choi S.L., Song J.Y., Lee G.M. Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 C // Biotechnol. Bioeng. 2005. Vol. 89. N 3. P. 345–356.

32. Wilkens C.A., Altamirano C., Gerdtzen Z.P. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose // Biotechnol. Bioprocess Eng. 2011. Vol. 16. N 4. 714–724.

33. Tsao Y.S., Cardoso A.G., Condon R.G., Voloch M., Lio P., Lagos J.C., Kearns B.G., Liu Z. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism // J. Biotechnol. 2005. Vol. 118. N 3. P. 316–327.

34. Lao M.S., Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture // Biotechnol. Prog. 1997. Vol. 13. N 5. P. 688–691.

35. Kim T.K., Ryu J.S., Chung J.Y., Kim M.S., Lee G.M. Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: clonal variations // Biotechnol. Progr. 2000. Vol. 16. N 5. P. 775–781.

36. Kim M.S., Kim N.S., Sung Y.H., Lee G.M. Biphasic culture strategy based on hyperosmotic pressure for improved humanized antibody production in Chinese hamster ovary cell culture // In Vitro Cell. Dev. Biol.-Animal. 2002. Vol. 38. N 6. P. 314–319.

37. Takagi M., Hayashi H., Yoshida T. The effect of osmolarity on metabolism and morphology in adhesion and suspension Chinese hamster ovary cells producing tissue plasminogen activator // Cytotechnology. 2000. Vol. 32. N 3. P. 171–179.

38. Zhang X., Garcia I.F., Baldi L., Hacker D.L., Wurm F.M. Hyperosmolarity enhances transient recombinant protein yield in Chinese hamster ovary cells // Biotechnol. Lett. 2010. Vol. 32. N 11. P. 1587–1592.

39. Warburg O. On the origin of cancer cells // Science. 1956. Vol. 123. N 3191. P. 309–314.

40. Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? // Trends Biochem. Sci. 2016. Vol. 41. N 3. P. 211–218.

41. Shestov A.A., Liu X., Ser Z., Cluntun A.A., Hung Y.P., Huang L., Kim D., Le A., Yellen G., Albeck J.G., Locasale J.W. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step // eLife. 2014. Vol. 3: e03342.

42. DeBerardinis R.J., Lum J.J., Hatzivassiliou G., Thompson C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation // Cell Metab. 2008. Vol. 7. N 1. P. 11–20.

43. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation // Science. 2009. Vol. 324. N 5930. P. 1029–1033.

44. Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield // J. Bioenerg. Biomembr. 1997. Vol. 29. N 4. P. 355–364.

45. Zagari F., Jordan M., Stettler M., Broly H., Wurm F.M. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity // N. Biotechnol. 2013. Vol. 30. N 2. P. 238–245.

46. Hong J.K., Nargund S., Lakshmanan M., Kyriakopoulos S., Kim D.Y., Ang K.S., Leong D., Yang Y., Lee D.Y. Comparative phenotypic analysis of CHO clones and culture media for lactate shift // J. Biotechnol. 2018. Vol. 283. P. 97–104.

47. Gray J.V., Petsko G.A., Johnston G.C., Ringe D., Singer R.A., Werner-Washburne M. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 2004. Vol. 68. N 2. P. 187–206.

48. Wierman M.B., Maqani N., Strickler E., Li M., Smith J.S. Caloric restriction extends yeast chronological lifespan by optimizing the Snf1 (AMPK) signaling pathway // Mol. Cell. Biol. 2017. Vol. 37. N 13: e00562-16.

49. Buchsteiner M., Quek L.E., Gray P., Nielsen L.K. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect // Biotechnol. Bioeng. 2018. Vol. 115. N 9. P. 2315–2327.

50. Wilkens C.A., Gerdtzen Z.P. Comparative metabolic analysis of CHO cell clones obtained through cell engineering, for IgG productivity, growth and cell longevity // PloS One. 2015. Vol. 10. N 3: e0119053.

51. Altamirano C., Illanes A., Becerra S., Cairó J.J., Gò- dia F. Considerations on the lactate consumption by CHO cells in the presence of galactose // J. Biotechnol. 2006. Vol. 125. N 4. P. 547–556.

52. Gladden L.B. Lactate metabolism: a new paradigm for the third millennium // J. Physiol. 2004. Vol. 558. N 1. P. 5–30.

53. Zilberter Y., Zilberter T., Bregestovski P. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis // Trends Pharmacol. Sci. 2010. Vol. 31. N 9. P. 394–401.

54. Wyss M.T., Jolivet R., Buck A., Magistretti P.J., Weber B. In vivo evidence for lactate as a neuronal energy source // J. Neurosci. Res. 2011. Vol. 31. N 20. P. 7477–7485.

55. Pellerin L., Bouzier-Sore A.K., Aubert A., Serres S., Merle M., Costalat R., Magistretti P.J. Activity-dependent regulation of energy metabolism by astrocytes: an update // Glia. 2007. Vol. 55. N 12. P. 1251–1262.

56. Orozco H., Matallana E., Aranda A. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions // Microbial cell factories. 2012. Vol. 11: 104.

57. Aranda A., Orozco H., Picazo C., Matallana E. Yeast life span and its impact on food fermentations // Fermentation. 2019. Vol. 5. N 2: 37.

58. Thomas K.C., Hynes S.H., Ingledew W.M. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids // Appl. Environ. Microbiol. 2002. Vol. 68. N 4. P. 1616–1623.

59. Morgunova G.V., Klebanov A.A., Marotta F., Khokhlov A.N. Culture medium pH and stationary phase/ chronological aging of different cells // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 2. P. 47–51.

60. Morgunova G.V., Klebanov A.A. Impairment of the viability of transformed Chinese hamster cells in a nonsubcultured culture under the influence of exogenous oxidized guanoside is manifested only in the stationary phase of growth // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 3. P. 124–129.

61. Morgunova G.V., Karmushakov A.F., Klebanov A.A., Khokhlov A.N. Studies into the effect of “mild” uncoupling with 2,4-dinitrophenol on the growth of Chinese hamster cell culture and its subsequent dying out in the stationary phase // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 3. P. 163–169.

62. Matés J.M., Di Paola F.J., Campos-Sandoval J.A., Mazurek S., Márquez J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer // Semin. Cell Dev. Biol. 2020. Vol. 98. P. 34–43.

63. Khokhlov A.N., Morgunova G.V., Klebanov A.A. Demographic approaches to the study of aging on cell cultures // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 4. P. 262–267.

64. Yang Y., Santos A.L., Xu L., Lotton C., Taddei F., Lindner A.B. Temporal scaling of aging as an adaptive strategy of Escherichia coli // Sci. Adv. 2019. Vol. 5: eaaw2069.


Для цитирования:


Моргунова Г.В. Клетки китайского хомячка в биотехнологических и геронтологических исследованиях. Вестник Московского университета. Серия 16. Биология. 2020;75(4):237-243.

For citation:


Morgunova G.V. Chinese hamster cells in biotechnological and gerontological research. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):237-243. (In Russ.)

Просмотров: 30


ISSN 0137-0952 (Print)