Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Chinese hamster cells in biotechnological and gerontological research

Abstract

A Correction to this article is available

One of the most frequently used model objects in gerontology is yeast, primarily Saccharomyces cerevisiae. A significant amount of data has been accumulated, allowing to believe that in yeast undergoing chronological or “stationary phase” aging, damage is similar to age-related lesions in the cells of multicellular organism. However, studies on yeast, like on any objects, are not without drawbacks; in particular, although yeasts are eukaryotes, in terms of evolution they are far from mammals, which impose a limitation on the studies of non-conservative metabolic pathways in yeast. In some cases, mammalian cells are better for chronological model experiments, for example, Chinese hamster cells. They are actively used in industry for the manufacturing of monoclonal antibodies and recombinant proteins. A significant proportion of these products are produced after cessation of proliferation which initiates chronological aging of the culture. The accumulated data on the features of the function of cell metabolism, growth, culture and the duration of its functional activity are extremely valuable for gerontologists. The exchange of information between these two branches – biotechnological and gerontological – will be beneficial to both parties.

About the Author

G. V. Morgunova
Evolutionary Cytogerontology Sector, School of Biology, Lomonosov Moscow State University
Russian Federation
Leninskiye gory 1–12, Moscow, 119234


References

1. Kaeberlein M., Burtner C.R., Kennedy B.K. Recent developments in yeast aging // PLoS Genet. 2007. Vol. 3. N 5: e84.

2. Longo V.D., Shadel G.S., Kaeberlein M., Kennedy B. Replicative and chronological aging in Saccharomyces cerevisiae // Cell Metab. 2012. Vol. 16. N 1. P. 18–31.

3. Aging research in yeast // Subcellular Biochemistry / Ed. M. Breitenbach, S.M. Jazwinski, and P. Laun. Dordrecht; Heidelberg; London; N.Y.: Springer, 2012. 368 pp.

4. MacLean M., Harris N., Piper P.W. Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms // Yeast. 2001. Vol. 18. N 6. P. 499–509.

5. Fabrizio P., Longo V.D. The chronological life span of Saccharomyces cerevisiae // Aging Cell. 2003. Vol. 2. N 2. P. 73–81.

6. Barnes D.E., Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells // Annu. Rev. Genet. 2004. Vol. 38. P. 445–476.

7. Faucher F., Duclos S., Bandaru V., Wallace S.S., Doublié S. Crystal structures of two archaeal 8-oxoguanine DNA glycosylases provide structural insight into guanine/8-oxoguanine distinction // Structure. 2009. Vol. 17. N 5. P. 703–712.

8. Herrera-Cruz M.S., Simmen T. Of yeast, mice and men: MAMs come in two flavors // Biol. Direct. 2017. Vol. 12: 3.

9. Morgunova G.V., Klebanov A.A. Age-Related AMPactivated protein kinase alterations: From cellular energetics to longevity // Cell Biochem. Funct. 2019. Vol. 37. N 3. P. 169–176.

10. Zimmermann A., Hofer S., Pendl T., Kainz K., Madeo F., Carmona-Gutierrez D. Yeast as a tool to identify antiaging compounds // FEMS Yeast Res. 2018. Vol. 18. N 6: foy020.

11. Chartrain M., Chu L. Development and production of commercial therapeutic monoclonal antibodies in Mammalian cell expression systems: an overview of the current upstream technologies // Curr. Pharm. Biotechnol. 2008. Vol. 9. N 6. P. 447–467.

12. Jeong D.W., Cho I.T., Kim T.S., Bae G.W., Kim I.H., Kim I.Y. Effects of lactate dehydrogenase suppression and glycerol-3-phosphate dehydrogenase overexpression on cellular metabolism // Mol. Cell. Biochem. 2006. Vol. 284. N 1–2. P. 1–8.

13. Lai T., Yang Y., Ng S.K. Advances in mammalian cell line development technologies for recombinant protein production // Pharmaceuticals. 2013. Vol. 6. N 5. P. 579–603.

14. Lewis N.E., Liu X., Li Y., Nagarajan H., Yerganian G., O’brien E., Bordbar A., Roth A.M., Rosenbloom J., Bian C., Xie M. Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome // Nat. Biotechnol. 2013. Vol. 31. N 8. P. 759–765.

15. Fischer S., Handrick R., Otte K. The art of CHO cell engineering: a comprehensive retrospect and future perspectives // Biotechnol. Adv. 2015. Vol. 33. N 8. P. 1878–1896.

16. Brown A.J., James D.C. Precision control of recombinant gene transcription for CHO cell synthetic biology // Biotechnol. Adv. 2016. Vol. 34. N 5. P. 492–503.

17. Golabgir A., Gutierrez J.M., Hefzi H., Li S., Palsson B.O., Herwig C., Lewis N.E. Quantitative feature extraction from the Chinese hamster ovary bioprocess bibliome using a novel meta-analysis workflow // Biotechnol. Adv. 2016. Vol. 34. N 5. 21–633.

18. Hefzi H., Ang K.S., Hanscho M., Bordbar A., Ruckerbauer D., Lakshmanan M., Orellana C.A., BaycinHizal D., Huang Y., Ley D., Martinez V.S. A consensus genome-scale reconstruction of Chinese hamster ovary cell metabolism // Cell Systems. 2016. Vol. 3. N 5. P. 434–443.

19. Kim J.Y., Kim Y.G., Lee G.M. CHO cells in biotechnology for production of recombinant proteins: current state and further potential // Appl. Microbiol. Biotechnol. 2012. Vol. 93. N 3. P. 917–930.

20. Altamirano C., Paredes C., Cairo J.J., Godia F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine // Biotechnol. Progr. 2000. Vol. 16. N 1. P. 69–75.

21. Kim S.H., Lee G.M. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44) // Appl. Microbiol. Biot. 2007. Vol. 76. N 3. P. 659–665.

22. Li J., Wong C.L., Vijayasankaran N., Hudson T., Amanullah A. Feeding lactate for CHO cell culture processes: impact on culture metabolism and performance // Biotechnol. Bioeng. 2012. Vol. 109. N 5. P. 1173–1186.

23. Toussaint C., Henry O., Durocher Y. Metabolic engineering of CHO cells to alter lactate metabolism during fedbatch cultures // J. Biotechnol. 2016. Vol. 217. P. 122–131.

24. Brunner M., Doppler P., Klein T., Herwig C., Fricke J. Elevated pCO2 affects the lactate metabolic shift in CHO cell culture processes // Eng. Life Sci. 2018. Vol. 18. N 3. P. 204–214.

25. Zhou M., Crawford Y., Ng D., Tung J., Pynn A.F., Meier A., Yuk I.H., Vijayasankaran N., Leach K., Joly J., Snedecor B. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases // J. Biotechnol. 2011. Vol. 153. N 1–2. P. 27–34.

26. Yip S.S., Zhou M., Joly J., Snedecor B., Shen A., Crawford Y. Complete knockout of the lactate dehydrogenase A gene is lethal in pyruvate dehydrogenase kinase 1, 2, 3 down-regulated CHO cells // Mol. Biotechnol. 2014. Vol. 56. N 9. P. 833–838.

27. Noh S.M., Park J.H., Lim M.S., Kim J.W., Lee G.M. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells // App. Microbiol. Biotechnol. 2017. Vol. 101. N 3. P. 1035–1045.

28. Oguchi S., Saito H., Tsukahara M., Tsumura H. pH Condition in temperature shift cultivation enhances cell longevity and specific hMab productivity in CHO culture // Cytotechnology. 2006. Vol. 52. N 3. P 199–207.

29. Kim Y.J., Baek E., Lee J.S., Lee G.M. Autophagy and its implication in Chinese hamster ovary cell culture // Biotechnol. Lett. 2013. Vol. 35. N 11. P. 1753–1763.

30. Fomina-Yadlin D., Gosink J.J., McCoy R., Follstad B., Morris A., Russell C.B., McGrew J.T. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines // Biotechnol. Bioeng. 2014. Vol. 111. N 5. P. 965–979.

31. Yoon S.K., Choi S.L., Song J.Y., Lee G.M. Effect of culture pH on erythropoietin production by Chinese hamster ovary cells grown in suspension at 32.5 and 37.0 C // Biotechnol. Bioeng. 2005. Vol. 89. N 3. P. 345–356.

32. Wilkens C.A., Altamirano C., Gerdtzen Z.P. Comparative metabolic analysis of lactate for CHO cells in glucose and galactose // Biotechnol. Bioprocess Eng. 2011. Vol. 16. N 4. 714–724.

33. Tsao Y.S., Cardoso A.G., Condon R.G., Voloch M., Lio P., Lagos J.C., Kearns B.G., Liu Z. Monitoring Chinese hamster ovary cell culture by the analysis of glucose and lactate metabolism // J. Biotechnol. 2005. Vol. 118. N 3. P. 316–327.

34. Lao M.S., Toth D. Effects of ammonium and lactate on growth and metabolism of a recombinant Chinese hamster ovary cell culture // Biotechnol. Prog. 1997. Vol. 13. N 5. P. 688–691.

35. Kim T.K., Ryu J.S., Chung J.Y., Kim M.S., Lee G.M. Osmoprotective effect of glycine betaine on thrombopoietin production in hyperosmotic Chinese hamster ovary cell culture: clonal variations // Biotechnol. Progr. 2000. Vol. 16. N 5. P. 775–781.

36. Kim M.S., Kim N.S., Sung Y.H., Lee G.M. Biphasic culture strategy based on hyperosmotic pressure for improved humanized antibody production in Chinese hamster ovary cell culture // In Vitro Cell. Dev. Biol.-Animal. 2002. Vol. 38. N 6. P. 314–319.

37. Takagi M., Hayashi H., Yoshida T. The effect of osmolarity on metabolism and morphology in adhesion and suspension Chinese hamster ovary cells producing tissue plasminogen activator // Cytotechnology. 2000. Vol. 32. N 3. P. 171–179.

38. Zhang X., Garcia I.F., Baldi L., Hacker D.L., Wurm F.M. Hyperosmolarity enhances transient recombinant protein yield in Chinese hamster ovary cells // Biotechnol. Lett. 2010. Vol. 32. N 11. P. 1587–1592.

39. Warburg O. On the origin of cancer cells // Science. 1956. Vol. 123. N 3191. P. 309–314.

40. Liberti M.V., Locasale J.W. The Warburg effect: how does it benefit cancer cells? // Trends Biochem. Sci. 2016. Vol. 41. N 3. P. 211–218.

41. Shestov A.A., Liu X., Ser Z., Cluntun A.A., Hung Y.P., Huang L., Kim D., Le A., Yellen G., Albeck J.G., Locasale J.W. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step // eLife. 2014. Vol. 3: e03342.

42. DeBerardinis R.J., Lum J.J., Hatzivassiliou G., Thompson C.B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation // Cell Metab. 2008. Vol. 7. N 1. P. 11–20.

43. Vander Heiden M.G., Cantley L.C., Thompson C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation // Science. 2009. Vol. 324. N 5930. P. 1029–1033.

44. Brand K. Aerobic glycolysis by proliferating cells: protection against oxidative stress at the expense of energy yield // J. Bioenerg. Biomembr. 1997. Vol. 29. N 4. P. 355–364.

45. Zagari F., Jordan M., Stettler M., Broly H., Wurm F.M. Lactate metabolism shift in CHO cell culture: the role of mitochondrial oxidative activity // N. Biotechnol. 2013. Vol. 30. N 2. P. 238–245.

46. Hong J.K., Nargund S., Lakshmanan M., Kyriakopoulos S., Kim D.Y., Ang K.S., Leong D., Yang Y., Lee D.Y. Comparative phenotypic analysis of CHO clones and culture media for lactate shift // J. Biotechnol. 2018. Vol. 283. P. 97–104.

47. Gray J.V., Petsko G.A., Johnston G.C., Ringe D., Singer R.A., Werner-Washburne M. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae // Microbiol. Mol. Biol. Rev. 2004. Vol. 68. N 2. P. 187–206.

48. Wierman M.B., Maqani N., Strickler E., Li M., Smith J.S. Caloric restriction extends yeast chronological lifespan by optimizing the Snf1 (AMPK) signaling pathway // Mol. Cell. Biol. 2017. Vol. 37. N 13: e00562-16.

49. Buchsteiner M., Quek L.E., Gray P., Nielsen L.K. Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect // Biotechnol. Bioeng. 2018. Vol. 115. N 9. P. 2315–2327.

50. Wilkens C.A., Gerdtzen Z.P. Comparative metabolic analysis of CHO cell clones obtained through cell engineering, for IgG productivity, growth and cell longevity // PloS One. 2015. Vol. 10. N 3: e0119053.

51. Altamirano C., Illanes A., Becerra S., Cairó J.J., Gò- dia F. Considerations on the lactate consumption by CHO cells in the presence of galactose // J. Biotechnol. 2006. Vol. 125. N 4. P. 547–556.

52. Gladden L.B. Lactate metabolism: a new paradigm for the third millennium // J. Physiol. 2004. Vol. 558. N 1. P. 5–30.

53. Zilberter Y., Zilberter T., Bregestovski P. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis // Trends Pharmacol. Sci. 2010. Vol. 31. N 9. P. 394–401.

54. Wyss M.T., Jolivet R., Buck A., Magistretti P.J., Weber B. In vivo evidence for lactate as a neuronal energy source // J. Neurosci. Res. 2011. Vol. 31. N 20. P. 7477–7485.

55. Pellerin L., Bouzier-Sore A.K., Aubert A., Serres S., Merle M., Costalat R., Magistretti P.J. Activity-dependent regulation of energy metabolism by astrocytes: an update // Glia. 2007. Vol. 55. N 12. P. 1251–1262.

56. Orozco H., Matallana E., Aranda A. Two-carbon metabolites, polyphenols and vitamins influence yeast chronological life span in winemaking conditions // Microbial cell factories. 2012. Vol. 11: 104.

57. Aranda A., Orozco H., Picazo C., Matallana E. Yeast life span and its impact on food fermentations // Fermentation. 2019. Vol. 5. N 2: 37.

58. Thomas K.C., Hynes S.H., Ingledew W.M. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids // Appl. Environ. Microbiol. 2002. Vol. 68. N 4. P. 1616–1623.

59. Morgunova G.V., Klebanov A.A., Marotta F., Khokhlov A.N. Culture medium pH and stationary phase/ chronological aging of different cells // Moscow Univ. Biol. Sci. Bull. 2017. Vol. 72. N 2. P. 47–51.

60. Morgunova G.V., Klebanov A.A. Impairment of the viability of transformed Chinese hamster cells in a nonsubcultured culture under the influence of exogenous oxidized guanoside is manifested only in the stationary phase of growth // Moscow Univ. Biol. Sci. Bull. 2018. Vol. 73. N 3. P. 124–129.

61. Morgunova G.V., Karmushakov A.F., Klebanov A.A., Khokhlov A.N. Studies into the effect of “mild” uncoupling with 2,4-dinitrophenol on the growth of Chinese hamster cell culture and its subsequent dying out in the stationary phase // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 3. P. 163–169.

62. Matés J.M., Di Paola F.J., Campos-Sandoval J.A., Mazurek S., Márquez J. Therapeutic targeting of glutaminolysis as an essential strategy to combat cancer // Semin. Cell Dev. Biol. 2020. Vol. 98. P. 34–43.

63. Khokhlov A.N., Morgunova G.V., Klebanov A.A. Demographic approaches to the study of aging on cell cultures // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 4. P. 262–267.

64. Yang Y., Santos A.L., Xu L., Lotton C., Taddei F., Lindner A.B. Temporal scaling of aging as an adaptive strategy of Escherichia coli // Sci. Adv. 2019. Vol. 5: eaaw2069.


Review

For citations:


Morgunova G.V. Chinese hamster cells in biotechnological and gerontological research. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):237-243. (In Russ.)

Views: 404


ISSN 0137-0952 (Print)