Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Xeromorphic features of the leaves of Liriodendron tulipifera L. (Magnoliaceae) in the arid climate of Central Asia

Abstract

High irradiance of the habitat in arid areas is usually associated with high temperature and dry air, which can cause water scarcity in plants. The Tulip tree (Liriodendron tulipifera) is considered as a light-loving mesophytic species. This study showed that L. tulipifera forms shade or sun leaves depending on the lighting conditions. Some xeromorphic features were found in leaves of the trees in well-lit habitats. These sun leaves are smaller, denser and thicker, with smaller epidermal cells and a thick cuticle; the spongy parenchyma consists of a larger number of rows of small cells; the cells of the columnar parenchyma are larger, compared to the shade leaves. The sun leaf contains 20–30% more total chlorophyll, and the guard cells of the stomata of the sun leaf contain chloroplasts. Probably, the increased concentration of chlorophyll maintains the necessary level of energy balance in the conditions of inhibiting the photosynthesis process under high lightning and temperature. Decrease in the size of the sun leaf and epidermis cells, thickening of the cuticle and cell wall of epidermal cells, sunken stomata, compact mesophyll with small intercellular spaces, multi-row spongy parenchyma protect from overheating and passive loss of water; and can be considered as xeromorphic features. Large numerous stomata and vascular bundles contribute to effective cooling of the surface by transpiration at high temperatures under sufficient water supply. Thus, the leaves of L. tulipifera have an ecological plasticity in relation to light and temperature, which contributed to the acclimation of the species to the habitat conditions in arid climates.

About the Authors

N. G. Akinshina
M. Ulugbek National University of Uzbekistan
Uzbekistan
University st., 4, Tashkent, 100174


G. M. Duschanova
N.F. Rusanov Tashkent Botanic Garden, Academy of Science of the Republic of Uzbekistan
Uzbekistan
Bogishamol st., 232, Tashkent, 100140


A. A. Azizov
M. Ulugbek National University of Uzbekistan
Uzbekistan
University st., 4, Tashkent, 100174


A. I. Khalmurzaeva
N.F. Rusanov Tashkent Botanic Garden, Academy of Science of the Republic of Uzbekistan
Uzbekistan
Bogishamol st., 232, Tashkent, 100140


K. N. Toderich
International Platform for Dryland Research and Education, Tottori University
Japan
1390 Hamasaka, Tottori-city, 680-0001


References

1. Parks C.R., Miller N.G., Wendel J.F., McDougal K.M. Genetic divergence within the genus Liriodendron (Magnoliaceae) // Ann. Missouri Bot. Gard. 1983. Vol. 70. N 4. Р. 658–666.

2. Yaghuti A.A.Z., Movahedi A., Mohammadi K., Zhuge Q., Li H. The genetic diversity of Liriodendron tulipifera germplasm revealed by SSR markers // J. Biochem. Microb. Toxicol. 2018. Vol. 2. N 1: 1000105.

3. Ruban A.V. Evolution under the sun: optimizing light harvesting in photosynthesis // J. Exp. Bot. 2015. Vol. 66. N 1. P. 7–23.

4. Ueno M., Sae-Tang P., Kusama Y., Hihara Y., Matsuda M., Hasunuma T., Nishiyama Y. Moderate heat stress stimulates repair of photosystem II during photoinhibition in Synechocystis sp. PCC 6803 // Plant Cell Physiol. 2016. Vol. 57. N 11. P. 2417–2426.

5. Lambers H., Oliveira R.S. Plant physiological ecology. Cham: Springer, 2019. 736 pp.

6. Schulze E.-D., Beck E., Buchmann N., Clemens S., Muller-Hohenstein K., Scherer-Lorenzen M. Plant ecology. Berlin; Heidelberg: Springer, 2019. 926 pp.

7. Cutler D.F., Botha C.E.J., Stevenson D.W. Plant anatomy. An applied approach. Oxford: Blackwell Publishing Ltd, 2007. 312 pp.

8. Tosens T., Niinemets U., Vislap V., Eichelmann H., Castro-Dıez P. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function // Plant Cell Environ. 2012. Vol. 35. N 5. Р. 839–856.

9. Abrams M.D., Kubiske M.E., Steiner K.C. Drought adaptations and responses in five genotypes of Fraxinus pennsylvanica Marsh: photosynthesis, water relations and leaf morphology // Tree Physiol. 1990. Vol 6. N 3. P. 305–315.

10. Kubiske M.E., Abrams M.D. Photosynthesis, water relations, and leaf morphology of xeric versus mesic Quercus rubra ecotypes in central Pennsylvania in relation to moisture stress // Can. J. For. Res. 1992. Vol 22. N 9. P. 1402–1407.

11. Beck D.E. Liriodendron tulipifera. Yellow-Poplar. Magnoliaceae – Magnolia family // Silvics of North America: Hardwoods. Agriculture Handbook 654, vol. 2 / Eds. R.M. Burns and B.H. Honkala. Washington: United States Department of Agriculture, Forest Service, 1990. P. 406–416.

12. Busing R.T. Disturbance and the population Dynamics of Liriodendron tulipifera: simulations with a spatial model of forest succession // J. Ecol. 1995. Vol. 83. N 1. P. 45–53.

13. Цхоидзе Т., Чаидзе Ф., Концелидзе Н., Джакели Д. Биоэкология тюльпанных деревьев на Черноморском побережье Аджарии // Mod. Phytomorphol. 2013. Т. 4. C. 131–137.

14. Rivers M.C. Liriodendron tulipifera. The IUCN Red List of Threatened Species 2014: e.T194015A2294401 [Электронный ресурс]. 2014. URL: https://dx.doi.org/10.2305/IUCN.UK.2014-3.RLTS.T194015A2294401. en (дата обращения: 02.09.2019).

15. Rebbeck J., Scherzer A.J., Loats K.V. Foliar physiology of yellow-poplar (Liriodendron tulipifera L.) exposed to O3 and elevated CO2 over five seasons // Trees. 2004. Vol 18. N 3. P. 253–263.

16. Акиншина Н.Г., Азизов А.А., Халмурзаева А.И. Биоэкологические особенности, чистая продукция и потребление кислорода Liriodendron tulipifera в условиях Ташкента // Cубтропическое и декоративное садоводство: сб. науч. тр. № 71 / Под ред. А.В. Рындина и др. Cочи: ФГБНУ ВНИИЦиСК, 2019. С. 163–181.

17. Kim G. N., Han S.-H. Effects on growth, photosynthesis and pigment contents of Liriodendron tulipifera under elevated temperature and drought // KJ Agr. Forest Meteorol. 2015. Vol. 17. N 1. P. 75–84.

18. Ryang S.Z., Woo S.Y., Kwon S.Y., Kim S.H., Lee S.H., Kim K.N., Lee D.K. Changes of net photosynthesis, antioxidant enzyme activities, and antioxidant contents of Liriodendron tulipifera under elevated ozone // Photosynthetica. 2009. Vol. 47. N 1. P. 19–25.

19. Pellegrini E., Francini A., Lorenzini G., Nali C. PSII photochemistry and carboxylation efficiency in Liriodendron tulipifera under ozone exposure // Environ. Exp. Bot. 2011. Vol 70. N 2–3. P. 217–226.

20. Васильев Б.Р., Гольцова Н.И., Колодяжный С.Ф. Некоторые закономерности строения годичного вегетативного побега Liriodendron tulipifera L. (Magnoliaceae). Связь между морфологическими признаками метамеров закончившего рост побега // Бот. журн. 1980. Т. 65. № 3. С. 383–391.

21. Wettstein von D. Chrofyll – letal und der submiscopische form wechsel der plastiden // Exp. Cell Res. 1957. Vol. 12. N 3. P. 427–433.

22. Evert R.F. Esau’s plant anatomy, meristems, cells, and tissues of the plant body: their structure, function, and development. Third edition. New Jersey: John Wiley & Sons Inc., 2006. 601 pp.

23. Rivera P., Villaseñor J.L., Terrazas T. Meso- or xeromorphic? Foliar characters of Asteraceae in a xeric scrub of Mexico // Bot. Stud. 2017. Vol. 58. N 1: 12.

24. Abbas A., Bhatti K.H., Zehra S.S. Leaf xeromorphic adaptations in aeluropus lagopoides from ecosystem of the Cholistan desert (Pakistan) // Fresenius Env. Bull. 2018. Vol. 27. N 1. P. 612–621.

25. Lyshede O.B. Xeromorphic features of three stem assimilants in relation to their ecology // Bot. J. Linnean Soc. 2008. Vol.78. N 2. P. 85–98.


Review

For citations:


Akinshina N.G., Duschanova G.M., Azizov A.A., Khalmurzaeva A.I., Toderich K.N. Xeromorphic features of the leaves of Liriodendron tulipifera L. (Magnoliaceae) in the arid climate of Central Asia. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):251-257. (In Russ.)

Views: 1024


ISSN 0137-0952 (Print)