Mechanisms of resistance to clinically significant antibiotics of strains of bacteria of the genus Bacillus isolated from samples delivered from the International Space Station
Abstract
The Russian segment of the International Space Station, as a closed habitat, is a favorable environment for the development of microorganisms. There are bacteria and fungi of various systematic groups, some of which can lead to infections. Thus, certain species of sporeforming bacteria of the genus Bacillus are dangerous In seven strains of bacteria of this genus, isolated from samples obtained at the station, resistence to such β-lactam antibiotics as penicillin, ampicillin, meropenem, a number of cephalosporin derivatives I (cefazolin), II (cefuroxime), III (ceftriaxone, cefoperazone, ceftazidime), IV (cefepime) generations, as well as the aminocyclitol antibiotic spectinomycin. It was found that all these strains are resistant to penicillin and ampicillin with a minimum inhibitory concentration (MIC) from 16 to 2048 µg/ml, as well as to cephalosporin antibiotics and meropenem with a MIC value from 2 to 2048 µg/ml. Bacterial resistance to spectinomycin used in patients with allergy to β-lactams penicillins and cephalosporins is in the MIC range from 32 to 2048 µg/ml. The absence of active efflux pumps in B. licheniformis 7-12 with high MIC values for penicillin and ampicillin suggested that this strain has a β-lactamase defense mechanism against these antibiotics. In three more strains resistant to penicillin and ampicillin – B. subtilis 14-12, Bacillus sp. R2HG21, Bacillus sp. HEP3B2 functions another defense mechanism – active transport of the antibiotic from the cell, mediated by the presence of efflux pumps, functioning due to the electrochemical potential of the cell membrane. It has been shown that, in six strains of the studied bacilli, resistance to cephalosporin derivatives of the 3rd-4th generations of ceftriaxone, ceftazidime, cefepime and the aminocyclitol antibiotic spectinomycin is also apparently provided by systems of active outflow of xenobiotics belonging to the group of secondary transporters.
About the Authors
R. R. YenikeyevRussian Federation
Leninskiye gory 1–12, Moscow, 119234
N. Y. Tatarinova
Russian Federation
Leninskiye gory 1–12, Moscow, 119234
L. M. Zakharchuk
Russian Federation
Leninskiye gory 1–12, Moscow, 119234
References
1. Mora M., Mahnert A., Koskinen K., Pausan M.R., Oberauner-Wappis L., Krause R., Perras A.K., Gorkiewicz G., Berg G., Moissl-Eichinger C. Microorganisms in confined habitats: microbial monitoring and control of intensive care units, operating rooms, cleanrooms and the International Space Station // Front Microbiol. 2016. Vol. 7: 1573.
2. Mora M., Perras A., Alekhova T., Wink L., Krause R., Aleksandrova A., Novozhilova T., Moissl-Eichinger C. Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists // Microbiome. 2016. Vol. 4. N 1. P. 65–85.
3. Alekhova T.A.,Zakharchuk L.M., Tatarinova N.Y., Kadnikov V.V., Mardanov A.V., Ravin N.V. Skryabin K.G. Diversity of bacteria of the genus Bacillus on board of international space station // Dokl. Biochem. Biophys. 2015. Vol. 465. N 1. Р. 104–107.
4. Coil D.A., Neches R.Y., Lang J.M., Brown W.E., Severance M., Cavalier D.D., Eisen J.A. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS) // Peer J. 2016. Vol. 4: e1842.
5. Moissl-Eichinger C., Cockell C., Rettberg P. Venturing into new realms? Microorganisms in space // FEMS Microbiol. Rev. 2016. Vol. 40. N 5. P. 722–737.
6. Checinska A., Probst A.J., Vaishampayan P., White J.R., Kumar D., Stepanov V.G., Fox G.E., Nilsson H.R., Pierson D.L., Perry J., Venkateswaran K. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities // Microbiome. 2015. Vol. 3. N 1. P. 50–68.
7. Vaishampayan K.P., Cisneros J., Pierson D.L., Rogers S.O., Perry J. International Space Station environmental microbiome-microbial inventories of ISS filter debris // Appl. Microbiol. Biotechnol. 2014. Vol. 98. N 14. P. 6453–6466.
8. Farrar W.E., Reboli A.C. The genus Bacillus— Medical // The Prokaryotes. Handbook on the biology of bacteria, vol. 4. Bacteria: Firmicutes, Cyanobacteria / Eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt. N.Y.: Springer-Verlag, 2006. P. 609–630.
9. Janda J.M., Abbot S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls // J. Clin. Microbiol. 2007. Vol. 45. N 9. P. 2761–2764.
10. Elshikh M., Ahmed S., Funston S., Dunlop P., McGaw M., Marchant R., Banat I.M. Resazurin-based 96- well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants // Biotechnol. Lett. 2016. Vol. 38. N 6. P. 1015–1019.
11. Ardebili A., Lari A.R., Talebi M. Correlation of ciprofloxacin resistance with the AdeABC efflux system in Acinetobacter baumannii clinical isolates // Ann. Lab. Med. 2014. Vol. 34. N 6. P. 433–438.
12. Li X.Z., Nikaido H. Efflux-mediated drug resistance in bacteria // Drugs. 2004. Vol. 64. N 2. P. 159–204.
13. Timmery S., Hu X., Mahillon J. Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station // Astrobiology. 2011. Vol. 11. N 4. P. 323–334.
14. Horneck G., Moeller R., Cadet J., Douki T., Rocco L., Mancinelli R.L., Wayne L., Nicholson W.L., Panitz C., Rabbow E., Rettberg P., Spry A., Stackebrandt E., Vaishampayan P., Venkateswaran K.J. Resistance of bacterial endospores to outer space for planetary protection purposes – Experiment PROTECT of the EXPOSE-E Mission // Astrobiology. 2012. Vol. 12. N 5. P. 445–456.
15. Gaci N., Borrel G., Tottey W., O’Toole P.W., Brugère J-F. Archaea and the human gut: new beginning of an old story // World J. Gastroenterol. 2014. Vol. 20. N 43. P. 16062–16078.
16. Nolivos S., Cayron J., Dedieu A., Page A., Delolme F., Lesterlin C. Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer // Science. 2019. Vol. 364. N 6442. P. 778–782.
17. Foster T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects // FEMS Microbiol. Rev. 2017. Vol. 41. N 3. P. 430–449.
18. Piddock L.J.V. Multidrug-resistance efflux pumps? Not just for resistance // Nat. Rev. Microbiol. 2006. Vol. 4. N 8. P. 629–636.
19. Poole K. Efflux pumps as antimicrobial resistance mechanisms // Ann. Med. 2007. Vol. 39. N 3. P. 162–176.
20. Blair J.M.A., Richmond G.E., Piddock L.J.V. Multidrug efflux pumps in gram-negative bacteria and their role in antibiotic resistance // Future Microbiol. 2014. Vol. 9. N 10. P. 1165–1177.
21. Peleg A.Y., Adams J., Paterson D.L. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii // Antimicrob. Agents Chemother. 2007. Vol. 51. N 6. P. 2065–2069.
22. Baranova N., Elkins C.A. Antimicrobial drug efflux pumps in other gram-positive bacteria // Efflux-mediated antimicrobial resistance in bacteria. Mechanisms, regulation and clinical implications / Eds. X. Li, C.A. Elkins, and H.I. Zgurskaya. Cham: Springer, 2018. P. 197–218.
23. Masaoka Y., Ueno Y., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis // J. Bacteriol. 2000. Vol. 182. N 8. P. 2307–2310.
24. Zhang Z.C., Pornillos M.O., Chang X.G., Saier M.H. Functional characterization of the heterooligomeric EbrAB multidrug efflux transporter of Bacillus subtilis // Biochemistry. 2007. Vol. 46. N 17. P. 5218–5225.
25. Van Houdt R., Mijnendonckx K., Leys N. Microbial contamination monitoring and control during human space missions // Planet Space Sci. 2012. Vol. 60. N 1. P. 115–120.
Review
For citations:
Yenikeyev R.R., Tatarinova N.Y., Zakharchuk L.M. Mechanisms of resistance to clinically significant antibiotics of strains of bacteria of the genus Bacillus isolated from samples delivered from the International Space Station. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):265-272. (In Russ.)