Determination of the binding constant of LANA protein fragment with nucleosome
Abstract
On the surface of the nucleosome, there are many regions for interaction with chromatin proteins, but an acidic patch, a negatively charged region formed by the residues of the histone H2A/H2B dimer, is especially prominent. The acidic patch is a target for anticancer drugs and interaction locus for various pathogens. For instance, it was shown that this region is the binding site of the LANA protein of human gammaherpesvirus 8 and tethers the virus episomes to mitotic chromosomes. The development of methods for analyzing the binding of various compounds to nucleosomes is necessary both for understanding the mechanisms of chromatin regulation and for the therapeutic agents design. In this work, we propose a technique and measure the binding constant of the LANA protein fragment to nucleosome. In contrast to previous studies, the measurements were carried out at a physiological salt concentration in the buffer solution. The proposed technique is based on the signal detection from the fluorescently labeled peptides after the separation of complexes of nucleosomes with peptides by gel electrophoresis. The paper also discusses mathematical models for analyzing the interaction between peptides and nucleosome and possible factors that can affect it.
About the Authors
R. V. NovikovRussian Federation
Leninskiye Gory 1–12, Moscow, 119234
Olympic str., 1, Sochi, 354340
E. A. Bondarenko
Russian Federation
Leninskiye Gory 1–12, Moscow, 119234
N. V. Malyuchenko
Russian Federation
Leninskiye Gory 1–12, Moscow, 119234
A. V. Feofanov
Russian Federation
Leninskiye Gory 1–12, Moscow, 119234
Miklukho-Maklaya ul. 16/10, Moscow, 117997
V. M. Studitsky
Russian Federation
Leninskiye Gory 1–12, Moscow, 119234
Cottman Avenue 333, Philadelphia, PA 19111, USA
A. K. Shaytan
Russian Federation
Leninskiye Gory 1–12, Moscow, 119234
Olympic str., 1, Sochi, 354340
References
1. Horn V., Ingen van H. Recognition of nucleosomes by chromatin factors: lessons from data-driven dockingbased structures of nucleosome-protein complexes // Chromatin and Epigenetics / Eds. C. Logie and T.A. Knoch. IntechOpen, 2018. DOI: 10.5772/intechopen.81016.
2. Armeev G.A., Gribkova A.K., Pospelova I., Komarova G.A., Shaytan A.K. Linking chromatin composition and structural dynamics at the nucleosome level // Curr. Opin. Struct. Biol. 2019. Vol. 56. P. 46–55.
3. Kalashnikova A.A., Porter-Goff M.E., Muthurajan U.M., Luger K., Hansen J.C. The role of the nucleosome acidic patch in modulating higher order chromatin structure // J. R. Soc. Interface. 2013. Vol. 10. N 82: 20121022
4. Barbera A.J., Chodaparambil J.V., Kelley-Clarke B., Joukov V., Walter J.C., Luger K., Kaye K.M. The nucleosomal surface as a docking station for Kaposi’s sarcoma herpesvirus LANA // Science. 2006. Vol. 311. N 5762. P. 856–861.
5. Adhireksan Z., Palermo G., Riedel T., Ma Z., Muhammad R., Rothlisberger U., Dyson P.J., Davey C.A. Allosteric cross-talk in chromatin can mediate drug-drug synergy: 1 // Nat. Commun. 2017. Vol. 8. N 1: 14860.
6. Beauchemin C., Moerke N.J., Faloon P., Kaye K.M. Assay development and high-throughput screening for inhibitors of Kaposi’s sarcoma–associated herpesvirus N-terminal latency-associated nuclear antigen binding to nucleosomes // J. Biomol. Screen. 2014. Vol. 19. N 6. P. 947–958.
7. Teles K., Fernandes V., Silva I., Leite M., Grisolia C., Lobbia V.R., van Ingen H., Honorato R., Lopes-de-Oliveira P., Treptow W., Santos G. Nucleosome binding peptide presents laudable biophysical and in vivo effects // Biomed. Pharmacother. 2020. Vol. 121: 109678.
8. Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned mononucleosomes // Chromatin Protocols. Methods in Molecular Biology (Methods and Protocols), vol 523 / Ed. S. Chellappan. Clifton: Humana Press, 2009. P. 109–123.
9. Lowary P.T., Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequencedirected nucleosome positioning // J. Mol. Biol. 1998. Vol. 276. N 1. P. 19–42.
10. Schindelin J., Arganda-Carreras I., Frise E., et al. Fiji: an open-source platform for biological-image analysis // Nat. Methods. 2012. Vol. 9. N 7. P. 676–682.
11. Millman K.J., Aivazis M. Python for scientists and engineers // Comput. Sci. Eng. 2011. Vol. 13. N 2. P. 9–12.
12. Weiss J.N. The Hill equation revisited: uses and misuses // FASEB J. 1997. Vol. 11. N 11. P. 835–841.
13. Chodaparambil J.V., Barbera A.J., Lu X., Kaye K.M., Hansen J.C., Luger K. A charged and contoured surface on the nucleosome regulates chromatin compaction: 11 // Nat. Struct. Mol. Biol. 2007. Vol. 14. N 11. P. 1105–1107.
14. Lyubitelev A.V., Kudryashova K.S., Mikhaylova M.S., Malyuchenko N.V., Chertkov O.V., Studitsky V.M., Feofanov A.V., Kirpichnikov M.P. Change in linker DNA conformation upon histone H1.5 binding to nucleosome: Fluorescent microscopy of single complexes // Moscow Univ. Biol. Sci. Bull. 2016. Vol. 71. N 2. P. 108–113.
15. Shaytan A.K., Armeev G.A., Goncearenco A., Zhurkin V.B., Landsman D., Panchenko A.R. Coupling between histone conformations and DNA geometry in nucleosomes on a microsecond timescale: atomistic insights into nucleosome functions // J. Mol. Biol. 2016. Vol. 428. N 1. P. 221–237.
Review
For citations:
Novikov R.V., Bondarenko E.A., Malyuchenko N.V., Feofanov A.V., Studitsky V.M., Shaytan A.K. Determination of the binding constant of LANA protein fragment with nucleosome. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(4):296-301. (In Russ.)