Effects of KKRRPGP (Lys-Lys-Arg-Arg-Pro-Gly-Pro) and KRRKPGP (Lys-Arg-Arg-Lys-Pro-Gly-Pro) peptides on hemostasis parameters, lipid profile, blood glucose level, and body weight changes in rats with metabolyc syndrome and endothelial dysfunction
Abstract
Lysine-and arginine-containing peptides Lys-Lys-Arg-Arg-Pro-Gly-Pro and Lys-Arg-Arg-LysPro-Gly-Pro were administered intranasal way (daily single dose of 100 mcg/kg for 7 days) to animals (laboratory rats) with experimental metabolic syndrome and endothelial dysfunction. Metabolic syndrome was modeled by a high-calorie diet throughout the experiment period, and endothelial dysfunction was modeled by intraperitoneal injection of L-NAME (daily single dose of 10 mg/kg for 5 days). It was found that these peptides had anti-clotting, hypoglycemic, and hypocholesterol effects and reduced body weight gain in experimental animals. Peptides treatments affected both primary (vascular-platelet) hemostasis, reducing platelet aggregation, and all links of plasma hemostasis, increasing anticoagulant, fibrindepolymerization and enzymatic fibrinolytic activity, as well as antifibrinstabilizing properties of plasma and reducing the concentration of fibrinogen in it. At the same time, the studied peptides reduced the content of total cholesterol, low-density lipoprotein cholesterol, and triglycerides, increasing the concentration of high-density lipoprotein cholesterol. These effects were observed 20 hrs after the last administration of peptides and persisted, although to a lesser extent, 7 days (168 hrs) after stopping treatment. In this regard, we can talk about the prolonged action of both glyproline peptides, which have lysine and arginine amino acid residues in their structure, and their ability to protect the body from the development of metabolic diseases and endothelial dysfunction. The maximum effects were provided by the LysArg-Arg-Lys-Pro-Gly-Pro peptide, which may be due to its structural features.
Keywords
About the Authors
N. F. MyasoedovRussian Federation
Kurchatov sq. 2, Moscow, 123182
L. A. Lyapina
Russian Federation
Laboratory of Blood Protection Systems, Department of Human and Animal Physiology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
T. Y. Obergan
Russian Federation
Laboratory of Blood Protection Systems, Department of Human and Animal Physiology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
M. E. Grigorjeva
Russian Federation
Laboratory of Blood Protection Systems, Department of Human and Animal Physiology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
T. A. Shubina
Russian Federation
Laboratory of Blood Protection Systems, Department of Human and Animal Physiology, School of Biology
Leninskiye gory 1–12, Moscow, 119234
L. A. Andreeva
Russian Federation
Kurchatov sq. 2, Moscow, 123182
References
1. McCracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome // Clin. Dermatol. 2018. Vol. 36. N 1. P. 14–20.
2. Lee S.K., Khambhati J., Bhagava A., Engels M.C., Sandesara P.B., Quyyumi A.A. Endothelial dysfunction and metabolic syndrome // Hypertens. J. 2017. Vol. 3. N 2. P. 72–80.
3. Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in the polarization of adipose tissue macrophages // J. Clin. Invest. 2007. Vol. 117. N 1. P. 175–184.
4. Brownlee M. Pathobiology of diabetic complications: unifying mechanism // Diabetes. 2005. Vol. 54. N 6. P. 1615–1625.
5. Kitade H., Sawamoto K., Nagashimada M., Inoue H., Yamamoto Y., Sai Y. CCR5 plays an important role in obesity-induced adipose tissue inflammation and insulin resistance, regulating both macrophage recruitment and M1/M2 status // Diabetes. 2012. Vol. 61. N 7. P. 1680–1690.
6. Forbes J.M., Cooper M.E. Mechanisms of diabetic complications // Physiol. Rev. 2013. Vol. 93. N 1. P. 137–188.
7. Beverly J.K., Budoff M.J. Atherosclerosis: pathophysiology of insulin resistance, hyperglycemia, hyperlipidemia, and inflammation // J. Diabetes. 2020. Vol. 12. N 2. P. 102–104.
8. Zhang Z., Liu J., Wang H., Wu H., Wu X., Dong J., Liao L. Association between a variant of the chemokine receptor 5 (CCR5) delta32 gene and atherosclerosis: meta analysis of 13 studies // Int. J. Clin. Exp. Med. 2015. Vol. 8. N 1. P. 658–665.
9. Pothineni N.V.K., Subramany S., Kuriakose K., Shirazi L.F., Romeo F., Shah P.K., Mehta J.L. Infections, atherosclerosis, and coronary heart disease // Eur. Heart J. 2017. Vol. 38. N 43. P. 3195–3201.
10. Gresele P., Momi S. Nitric oxide-enhancing or – releasing agents as antithrombotic drugs // Biochem. Pharmacol. 2019. Vol. 166. P. 300–312.
11. Kawano H., Motoyama T., Hirai N., Kigiyama K., Yasue H., Ogawa H. Endothelial dysfunction in hypercholesterolemia is improved by L-arginine administration: on possible role of oxidative stress // Atherosclerosis. 2002. Vol. 161. N 2. P. 375–380.
12. Myasoedov N.F., Lyapina L.A., Andreeva L.A., Grigorieva M.E., Obergan T.Y., Shubina T.A. The modern view on the role of glyprolines by metabolic syndrome // Med. Res. Rev. 2020. DOI: 10.1002/med.21748.
13. Tian D.L., Guo R.J., Li Y.M., Chen P.P., Zi B.B., Wang J.J, Liu R.F., Min Y.N., Wang Z.P., Niu Z.Y., Liu F.Z. Effects of lysine deficiency or excess on growth and the expression of lipid metabolism genes in slow-growing broilers // Poultry Sci. 2019. Vol. 98. N 7. P. 2927–2932.
14. Myasoedov N.F., Lyapina L.A., Grigorjeva M.E., Obergan T.Y., Shubina T.A., Andreeva L.A. Мechanism for glyproline protection in hypercholesterolemia // Pathophysiol. 2016. Vol. 23. N 1. P. 27–33.
15. Ляпина Л. А., Григорьева М. Е., Оберган Т. Ю., Шубина Т. А. Теоретические и практические вопросы изучения функционального состояния противосвертывающей системы крови. М.: Адвансед Солюшнз, 2012. 160 с.
16. Yao L., Herlea-Pana O., Heuser-Baker J., Chen Y., Barlic-Dicen J. Roles of the chemokine system in the development of obesity, insulin resistance and cardiovascular disease // J. Immunol. Res. 2014. Vol. 2014: 181450.
17. Grandi G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome // Semin. Immunopathol. 2018. Vol. 40. N 2. P. 215–224.
18. Davel A.P., Wenceslau C.F., Akamine E.H., Xavier F.E., Couto G.K., Oliveira H.T., Rossoni L.V. Endothelial dysfunction in cardiovascular and endocrine-metabolic diseases: an update // Braz. J. Med. Biol. Res. 2011. Vol. 44. N 9. P. 920–932.
19. Rask-Madsen C., King G.L. Mechanisms of disease: endothelial dysfunction in insulin resistance and diabetes // Nat. Clin. Pract. Endocrinol. Metab. 2007. Vol. 3. N 1. P. 46–56.
20. Li G., Zhu G., Gao Y., Xiao W., Xu H., Liu S. Neferin inhibits upregulation of CCL5 and CCR5 in vascular endothelial cells during chronic high glucose processing // Inflammation. 2013. Vol. 36. N 2. P. 300–308.
21. Григорьева М.Е., Ляпина Л.А., Оберган Т.Ю. Регуляция глипролинами первичного гемостаза и сосудисто-эндотелиальной функции организма при метаболическом синдроме // Тромбоз, гемостаз и реол. 2019. № 3. С. 32–37.
22. Kopincová J., Púzserová A., Bernátová I. L-NAME in the cardiovascular system – nitric oxide synthase activator? // Pharmacol. Rep. 2012. Vol. 64. N 3. P. 511–520.
23. Grandl G., Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome // Semin. Immunopathol. 2018. Vol. 40. N 2. P. 215–224.
24. Lyapina L.A., Myasoedov N.F., Grigor’eva M.E., Shubina T.A., Andreeva L.A. The modern conception of the regulatory role of peptides of the glyproline family in the correction of hemostasis system function during development of diabetes mellitus // Biol. Bull. 2013. Vol. 40. N 2. P. 381–393.
25. Григорьева М.Е., Ляпина Л.А., Шубина Т.А., Андреева Л.А., Оберган Т.Ю., Пасторова В.Е., Мясоедов Н.Ф., Ульянов А.М. Защитные эффекты пептида Pro-Gly-Pro-Arg в условиях повышенной свертываемости крови при экспериментальной гипергликемии // Тромбоз, гемостаз и реол. 2011. № 3. С. 41–46.
26. Shabalina A.A., Kostyreva M.V., Tanashyan M.M., Susina Z.A., Lyapina L.A., Rochev D.L. In vitro lipid-lowering and fibrinolytic effects of regulatory leucine-containing glyprolines in human blood // Biol. Bull. 2015. Vol. 42. N 1. P. 74–77.
Review
For citations:
Myasoedov N.F., Lyapina L.A., Obergan T.Y., Grigorjeva M.E., Shubina T.A., Andreeva L.A. Effects of KKRRPGP (Lys-Lys-Arg-Arg-Pro-Gly-Pro) and KRRKPGP (Lys-Arg-Arg-Lys-Pro-Gly-Pro) peptides on hemostasis parameters, lipid profile, blood glucose level, and body weight changes in rats with metabolyc syndrome and endothelial dysfunction. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(1):10-17. (In Russ.)