Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Effect of low molecular weight chitosan on epidermal cells from pea leaves

Abstract

The effect of low molecular weight (MW) chitosans with a MW of 5, 6, 10, 25, 45 kDa and a deacetylation degree (DD) of 85–99% obtained by chemical depolymerization and enzymatic hydrolysis on the cells of the epidermis of pea leaves was analyzed. Low MW chitosans induced guard cells plasma membrane damage, which was estimated from the change in its permeability for the fluorescent dye propidium iodide, and programmed death of epidermal cells determined from destruction of cell nuclei. These effects are similar to those of commercial high MW chitosan with a MW of 290 kDa, a DD of 90%, which was manifested at higher concentrations than with low MW chitosan. The destructive effect of chitosan on the cells was predominantly DD-dependent, and it was not produced at concentrations up to 10 μg/ml inclusive. Low MW chitosan enhanced the generation of reactive oxygen species in the epidermis, which was detected by monitoring the fluorescence of 2',7'-dichlorofluorescein. The antioxidants nitroblue tetrazolium and propyl gallate inhibited, and Н2О2 accelerated this process.

About the Authors

D. V. Kiselevsky
Lomonosov Moscow State University
Russian Federation

Department of Immunology, School of Biology

Leninskiye gory 1–12, Moscow, 119234



B. Ts. Shagdarova
Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Laboratory of Biopolymer Engineering, Institute of Bioengineering

Leninsky ave. 33/2, Moscow, 119071



V. P. Varlamov
Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Laboratory of Biopolymer Engineering, Institute of Bioengineering

Leninsky ave. 33/2, Moscow, 119071



O. V. Samuilova
I.M. Sechenov University
Russian Federation

Department of Biochemistry

Trubetskaya str. 8–2, Moscow, 119991



V. D. Samuilov
Lomonosov Moscow State University
Russian Federation

Department of Immunology, School of Biology

Leninskiye gory 1–12, Moscow, 119234



References

1. Феофилова Е.П. Клеточная стенка грибов М.: Наука, 1983. 248 с.

2. Shagdarova B.T., Il’ina A.V., Varlamov V.P. Antibacterial activity of alkylated and acylated derivatives of low-molecular weight chitosan // Appl. Biochem. Microbiol. 2016. Vol. 52. N 2. P. 222–225.

3. Hadwiger L.A. Multiple effects of chitosan on plant systems: solid science or hype // Plant Sci. 2013. Vol. 208. P. 42–49.

4. Davydova V.N., Yermak I.M. The conformation of chitosan molecules in aqueous solutions // Biophysics. 2018. Vol. 63. N 4. P. 501–511.

5. Varlamov V.P., Il’ina A.V., Shagdarova B.T., Lunkov A.P., Mysyakina I.S. Chitin/chitosan and its derivatives: fundamental problems and practical approaches // Biochemistry (Mosc). 2020. Vol. 85. Suppl. 1. P. S154–S176.

6. Wang W., Xue C., Mao X. Chitosan: Structural modification, biological activity and application // Int. J. Biol. Macromol. 2020. Vol. 164. P. 4532–4546.

7. Young D.H., Köhle H., Kauss H. Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells // Plant Physiol. 1982. Vol. 70. N 5. P. 1449–1454.

8. Muxika A., Etxabide A., Uranga J., Guerrero P., de la Caba K. Chitosan as a bioactive polymer: Processing, properties and applications // Int. J. Biol. Macromol. 2017. Vol. 105. Pt. 2. P. 1358–1368.

9. Pospieszny H., Chirkov S., Atabekov J. Induction of antiviral resistance in plants by chitosan // Plant Sci. 1991. Vol. 79. N 1. P. 63–68.

10. Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, Yin H, Du Y. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell // Int. J. Biol. Macromol. 2018. Vol. 111. P. 1083–1090.

11. Srivastava N., Gonugunta V.K., Puli M.R., Raghavendra A.S. Nitric oxide production occurs downstream of reactive oxygen species in guard cells during stomatal closure induced by chitosan in abaxial epidermis of Pisum sativum // Planta. 2009. Vol. 229. N 4. P. 757–765.

12. Ye W., Munemasa S., Shinya T., Wu W., Ma T., Lu J., Kinoshita T., Kaku H., Shibuya N., Murata Y. Stomatal immunity against fungal invasion comprises not only chitin-induced stomatal closure but also chitosaninduced guard cell death // Proc. Natl. Acad. Sci. U.S.A. 2020. Vol. 117. N 34. P. 20932–20942.

13. Vasil’ev L.A., Dzyubinskaya E.V., Zinovkin R.A., Kiselevsky D.B., Lobysheva N.V., Samuilov V.D. Chitosaninduced programmed cell death in plants // Biochemistry (Mosc). 2009. Vol. 74. N 9. P. 1035–1043.

14. Vasil’ev L.A., Dzyubinskaya E.V., Kiselevsky D.B., Shestak A.A., Samuilov V.D. Programmed cell death in plants: protective effect of mitochondrial-targeted quinones // Biochemistry (Mosc). 2011. Vol. 76. N 10. P. 1120–1130.

15. Kiselevsky D.B., Frolova O.Y., Solovyev A.G., Dorokhov Y.L., Morozov S.Y., Samuilov V.D. Plant cell death caused by fungal, bacterial, and viral elicitors: protective effect of mitochondria-targeted quinones // Biochemistry (Mosc). 2014. Vol. 79. N 12. P. 1322–1332.

16. Kiselevsky D.B., Samuilov V.D. Permeability of the plasma membrane for propidium iodide and destruction of cell nuclei in the epidermis of pea leaves: the effect of polyelectrolytes and detergents // Moscow Univ. Biol. Sci. Bull. 2019. Vol. 74. N 3. P. 147–153.

17. Khasanova L.M., Il’ina A.V., Varlamov V.P., Sinitsyna O.A., Sinitsyn A.P. Hydrolysis of chitozan with an enzyme complex from Myceliophthora sp. // Appl. Biochem. Microbiol. 2014. Vol. 50. N 4. P. 381–386.

18. Luttge U., Higinbotham N. Transport in plants. N.Y.: Springer Verlag, 1979. 468 pp.

19. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M.A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry // Cytometry. 1992. Vol. 13. N 8. P. 795–808.

20. Samuilov V.D., Lagunova E.M., Kiselevsky D.B., Dzyubinskaya E.V., Makarova Ya.V., Gusev M.V. Participation of chloroplasts in plant apoptosis // Biosci. Rep. 2003. Vol. 23. N 2–3. P. 103–117.

21. Samuilov V.D., Kiselevsky D.B., Shestak A.A., Nesov A.V., Vasil’ev L.A. Reactive oxygen species in programmed death of pea guard cells // Biochemistry (Mosc). 2008. Vol. 73. N 10. P. 1076–1084.

22. Karlsson M., Kurz T., Brunk U.T., Nilsson S.E., Frennesson C.I. What does the commonly used DCF test for oxidative stress really show? // Biochem. J. 2010. Vol. 428. N 2. P. 183–190.


Review

For citations:


Kiselevsky D.V., Shagdarova B.Ts., Varlamov V.P., Samuilova O.V., Samuilov V.D. Effect of low molecular weight chitosan on epidermal cells from pea leaves. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(1):18-23. (In Russ.)

Views: 364


ISSN 0137-0952 (Print)