Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Thermoinactivation kinetics of strain А/BANGKOK/1/1979(Н3N2) influenza virus in the presence of polyallylamine

Abstract

Currently, an increasing place in antiviral therapy given to various polyelectrolytes. For polyelectrolyte polyallylamine with a molecular weight of 6000 Da, antiviral activity shown against influenza viruses, measles, herpes simplex type 1 and cytomegalovirus. A non-toxic concentration of 30 was determined, at which the antiviral effect for measles and flu is preserved, but there is no toxic effect on cells. At the same time, it known that the simultaneous effect of physical environmental factors and chemical compounds on the virus contributes to a more pronounced decrease in the infectivity of the virus. One of these physical factors is the temperature, the effect of which on the virus leads to its inactivation. The study of thermal inactivation parameters is of great practical importance in the development of influenza vaccines, as well as for studying the decrease in the infectious activity of viral particles when they settle on various surfaces. In this connection, it is of particular interest to study the kinetic and thermodynamic characteristics of the process of thermal inactivation of the influenza virus in the presence of the antiviral compound polyallylamine. In this paper, we have shown that the process of thermal inactivation of the influenza virus in the presence of polyallylamine in the temperature range 38–60°C described by the first-order reaction kinetics. Thermodynamic parameters of thermal inactivation indicate the involvement of surface proteins of the influenza virus in the process of inactivation as result of the interaction of polyallylamine with them. The results obtained indicate the possibility of using polyallylamine as a compound that accelerates the process of thermal inactivation of the influenza virus. 

About the Authors

N. A. Kontarov
I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Trubetskaya ul. 8–2, Moscow, 119991;

Malyi Kazenny per. 5a, Moscow, 115088



E. I. Dolgova
I.I Mechnikov Research Institute of Vaccines and Sera
Russian Federation
Malyi Kazenny per. 5a, Moscow, 115088


I. V. Pogarskaya
2I.I Mechnikov Research Institute of Vaccines and Sera
Russian Federation
Malyi Kazenny per. 5a, Moscow, 115088


E. O. Kontarova
Federal Research and Clinical Center, Federal Medical and Biological Agency
Russian Federation
Orekhovy bulv. 28, Moscow, 115682


N. V. Yuminova
I.I Mechnikov Research Institute of Vaccines and Sera
Russian Federation
Malyi Kazenny per. 5a, Moscow, 115088


References

1. Bhatia S., Lauster D., Bardua M., Ludwig K. Linear polysialoside outperforms dendritic analogs for inhibition of influenza virus infection in vitro and in vivo // Biomaterials. 2017. Vol. 138. P. 22–34.

2. Sundararajana A., Ganapathya R., Huana L., Dunlapb J. Infl enza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins // Antiviral. 2010. Vol. 88. N 1. P. 1–9.

3. Tuladar E., Bouwknegt M., Zwietering M.H., Koopmans M., Duizer E. Thermal stability of structurally different viruses with proven or potential relevance to food safety // J. Appl. Microbiol. 2012. Vol. 112. N 5. P. 1050–1057.

4. Wang W., Song H. S., Keller P. W., AlvaradoFacundo E., Vassell R., Weissa C. D. Conformational stability of the hemagglutinin of H5N1 influenza A viruses influences susceptibility to broadly neutralizing stem antibodies // J. Virol. 2018. Vol. 92. N 12: e00247-18.

5. Контаров Н. А., Ермакова А. А., Гребенкина Н. С., Юминова Н. В., Зверев В. В. Изучение противовирусной активности полиэлектролитов в отношении вируса гриппа // Вопр. вирусол. 2015. Т. 60. № 4. С. 5–9.

6. Joly M. A physico-chemical approach to the denaturation of proteins. L.; N.Y.: Academic Press, 1965. 350 pp.

7. Потехин С. А. Сканирующая микрокалориметрия при высоком давлении – новый метод исследования конформационных и фазовых // Усп. биол. хим. 2018. Т. 58. С. 285–312.

8. Mosmann T. Rapid сolorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays // J. Immunol. Methods. 1983. Vol. 65. N.1–2. P. 55–63.

9. Wegmann T. G., Smithies O. Improvement of the microtiter hemagglutination // Method. Transfusion. 1966. Vol. 8. N. 1. P. 67–73.

10. Pleshka S., Stein M., Schoop R., Hudson J. B. Antiviral properties and more of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV) // Virol. J. 2009. Vol. 6: 197.

11. Payne A. F., Binduga-Gajewska I., Kauffman E. B., Kramer L. D. Antiviral activity of binase against the pandemic influenza A (H1N1) virus // J. Virol. Meth. 2006. Vol. 134. N. 1–2. P. 183–189.


Review

For citations:


Kontarov N.A., Dolgova E.I., Pogarskaya I.V., Kontarova E.O., Yuminova N.V. Thermoinactivation kinetics of strain А/BANGKOK/1/1979(Н3N2) influenza virus in the presence of polyallylamine. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(1):41-46. (In Russ.)

Views: 324


ISSN 0137-0952 (Print)