Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Nanoparticles in the aquatic environment: the risks associated with them and the possibilities of their mitigation with microalgae

Abstract

Nanoparticles (NPs) are dangerous micro-pollutants that exhibit biotoxicity even in low (nanogram range) concentrations. Apart from direct toxicity to living organisms, NPs can absorb and transfer organic or inorganic toxicants, as well as potentiate the toxicity of other micropollutants. Increasing use of NPs in the industrial and domestic applications leads to their increased production and discharge into the environment giving rise to diverse risks for ecosystems. These risks are exacerbated by the resilience of NPs to biodegradation in natural ecosystems and traditional wastewater treatment plants. Efficient NPs removal technologies are complex and expensive, so they cannot be affordably replicated in common wastewater treatment plants. Despite the risks associated with NPs, humanity will not abandon their use in the nearest future, since the NPs are now at the foundation of many modern technologies. Biodestruction and biosorption of NPs using microalgae cultures and algal-bacterial consortia are considered promising approaches regarding the environmental safety and conservation of natural resources. However, the progress of this approach is hindered by paucity and fragmentary nature of the information about the effects of NPs on microalgae cells and microbial communities. This review attempts to fill this gap, at least partially, by considering common industrial NPs types based on metals and their oxides, as well as carbon nanomaterials. The pathways of their entry into aquatic ecosystems, toxicity to living organisms, accumulation and biotransformation in cells, synergistic effects of NPs in combination with heavy metals and antibiotics, as well as methods of bio-removal of NPs and nanomaterials from aquatic ecosystems using microalgae are discussed.

About the Authors

A. A. Gusev
Derzhavin Tambov State University; National University of Science and Technology “MISIS”; Plekhanov Russian University of Economics
Russian Federation

Technopark “Derzhavinsky”, Internatsionalnaya str. 33, Tambov, 392000;

Department of Functional Nanosystems and High-Temperature Materials,  Leninskii prosp. 4, Moscow, 119991;

Engineering Center, Stremiannii per. 36, Moscow 117997



O. V. Zakharova
Derzhavin Tambov State University; National University of Science and Technology “MISIS”; Plekhanov Russian University of Economics
Russian Federation

Technopark “Derzhavinsky”, Internatsionalnaya str. 33, Tambov, 392000;

Department of Functional Nanosystems and High-Temperature Materials,  Leninskii prosp. 4, Moscow, 119991;

Engineering Center, Stremiannii per. 36, Moscow 117997



I. A. Vasyukova
Derzhavin Tambov State University
Russian Federation

Technopark “Derzhavinsky”, Internatsionalnaya str. 33, Tambov, 392000



N. A. Evtushenko
Morozov Voronezh State University of Forestry and Technologies
Russian Federation

Center for Forest Biotechnologies of the Directorate of Research Institute, Institute of Innovative Technologies of the Forestry Complex

Timiriazeva str. 8, Voronezh, 394087



S. G. Vasilieva
Lomonosov Moscow State University; Derzhavin Tambov State University
Russian Federation

Department of Bioengineering, School of Biology, Leninskiye gory 1–12, Moscow, 119234

Institute of Natural Sciences, Internatsionalnaya str. 33, Tambov, 392000



A. A. Lukyanov
Lomonosov Moscow State University
Russian Federation

Department of Bioengineering, School of Biology, Leninskiye gory 1–12, Moscow, 119234



E. S. Lobakova
Lomonosov Moscow State University; Derzhavin Tambov State University
Russian Federation

Department of Bioengineering, School of Biology, Leninskiye gory 1–12, Moscow, 119234

Institute of Natural Sciences, Internatsionalnaya str. 33, Tambov, 392000



E. V. Skripnikova
Derzhavin Tambov State University
Russian Federation

Institute of Natural Sciences, Internatsionalnaya str. 33, Tambov, 392000



A. E. Solovchenko
Lomonosov Moscow State University; Derzhavin Tambov State University
Russian Federation

Department of Bioengineering, School of Biology, Leninskiye gory 1–12, Moscow, 119234

Institute of Natural Sciences, Internatsionalnaya str. 33, Tambov, 392000



References

1. Nguyen H.T., Yoon Y., Ngo H.H., Jang A. The application of microalgae in removing organic micropollutants in wastewater // Crit. Rev. Environ. Sci. Technol. 2021. Vol. 51. P. 1187–1220.

2. Xu L., Wang Y.-Y., Huang J., Chen C.-Y., Wang Z.-X., Xie H. Silver nanoparticles: synthesis, medical applications and biosafety // Theranostics. 2020. Vol. 10. N 20. P. 8996–9031.

3. Jiang J., Pi J., Cai J. The advancing of zinc oxide nanoparticles for biomedical applications // Bioinorg. Chem. Appl. 2018. Vol. 2018: 1062562.

4. Ziental D., Czarczynska-Goslinska B., Mlynarczyk D.T., Glowacka-Sobotta A., Stanisz B., Goslinski T., Sobotta L. Titanium dioxide nanoparticles: prospects and applications in medicine // Nanomaterials. 2020. Vol. 10. N 2: 387.

5. Li J., Li C., Zhao L., Pan X., Cai G., Zhu G. The application status, development and future trend of nanoiron materials in anaerobic digestion system // Chemosphere. 2021. Vol. 269: 129389.

6. Bezza F.A., Tichapondwa S.M., Chirwa E.M.N. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents // Sci. Rep. 2020. Vol. 10. N 1: 16680.

7. Hassanpour P., Panahi Y., Ebrahimi-Kalan A., Akbarzadeh A., Davaran S., Nasibova A., Khalilov R., Kavetskyy T. Biomedical applications of aluminium oxide nanoparticles // Micro Nano Lett. 2018. Vol. 13. N 9. P. 1227–1231.

8. Jahangirian H., Kalantari K., Izadiyan Z., RafieeMoghaddam R., Shameli K., Webster T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles // Int. J. Nanomed. 2019. Vol. 14. P. 1633–1657.

9. Yonezawa T. Application 78 – Preparation of metal nanoparticles and their application for materials // Nanoparticle technology handbook. 3rd Ed. / Eds. M. Naito, T. Yokoyama, K. Hosokawa, and K. Nogi. Amsterdam: Elsevier, 2018. P. 829–837.

10. Soares E.V., Soares H.M.V.M. Harmful effects of metal(loid) oxide nanoparticles // Appl. Microbiol. Biotechnol. 2021. Vol. 105. P. 1379–1394.

11. Piccinno F., Gottschalk F., Seeger S., Nowack B. Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world // J. Nanopart. Res. 2012. Vol. 14. N 9: 1109.

12. Meyer J.S., Lyons-Darden T., Garman E.R., Middleton E.T., Schlekat C.E. Toxicity of nanoparticulate nickel to aquatic organisms: review and recommendations for improvement of toxicity tests // Environ. Toxicol. Chem. 2020. Vol. 39. N 10. P. 1861–1883.

13. Lead J.R., Batley G.E., Alvarez P.J.J., Croteau M.-N., Handy R.D., McLaughlin M.J., Judy J.D., Schirmer K. Nanomaterials in the environment: behavior, fate, bioavailability, and effects–an updated review // Environ. Toxicol. Chem. 2018. Vol. 37. N 8. P. 2029–2063.

14. Déniel M., Errien N., Daniel P., Caruso A., Lagarde F. Current methods to monitor microalgaenanoparticle interaction and associated effects // Aquat. Toxicol. 2019. Vol. 217: 105311.

15. Pulido-Reyes G., Leganes F., Fernández-Piñas F., Rosal R. Bio-nano interface and environment: a critical review // Env. Toxicol. Chem. 2017. Vol. 36. N 12. P. 3181–3193.

16. Keller A.A., McFerran S., Lazareva A., Suh S. Global life cycle releases of engineered nanomaterials // J. Nanopart. Res. 2013. Vol. 15. N 6: 1692.

17. Bossa N., Chaurand P., Levard C., Borschneck D., Miche H., Vicente J., Geantet C., Aguerre-Chariol O., Michel F.M., Rose J. Environmental exposure to TiO2 nanomaterials incorporated in building material // Environ. Pollut. 2017. Vol. 220. P. 1160–1170.

18. Kaegi R., Ulrich A., Sinnet B., Vonbank R., Wichser A., Zuleeg S., Simmler H., Brunner S., Vonmont H., Burkhardt M., Boller M. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment // Environ. Pollut. 2008. Vol. 156. N 2. P. 233–239.

19. Bundschuh M., Filser J., Lüderwald S., McKee M.S., Metreveli G., Schaumann G.E., Schulz R., Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? // Environ. Sci. Eur. 2018. Vol. 30. N 1: 6.

20. Gondikas A.P., Kammer F. v.d., Reed R.B., Wagner S., Ranville J.F., Hofmann T. Release of TiO2 Nanoparticles from sunscreens into surface waters: a oneyear survey at the old danube recreational lake // Environ. Sci. Technol. 2014. Vol. 48. N 10. P. 5415–5422.

21. Andra S., Balu S.K., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication // Naunyn-Schmiedeberg’s Arch. Pharmacol. 2021. Vol. 394. N 7. P. 1355–1382.

22. Benn T.M., Westerhoff P. Nanoparticle silver released into water from commercially available sock fabrics // Environ. Sci. Technol. 2008. Vol. 42. N 11. P. 4133–4139.

23. Sawicki K., Czajka M., Matysiak-Kucharek M., Fal B., Drop B., Męczyńska-Wielgosz S., Sikorska K., Kruszewski M., Kapka-Skrzypczak L. Toxicity of metallic nanoparticles in the central nervous system // Nanotechnol. Rev. 2019. Vol. 8. N 1. P. 175–200.

24. Ermolin M.S., Fedotov P.S., Ivaneev A.I., Karandashev V.K., Fedyunina N.N., Eskina V.V. Isolation and quantitative analysis of road dust nanoparticles // J. Anal. Chem. 2017. Vol. 72. N 5. P. 520–532.

25. Galdames A., Ruiz-Rubio L., Orueta M., SánchezArzalluz M., Vilas-Vilela J.L. Zero-valent iron nanoparticles for soil and groundwater remediation // Int. J. Environ. Res. Public Health. 2020. Vol. 17. N 16: 5817.

26. Pirzadah B., Pirzadah T.B., Jan A., Hakeem K.R. Nanofertilizers: a way forward for green economy // Nanobiotechnology in agriculture: an approach towards sustainability / Eds. K.R. Hakeem and T.B. Pirzadah. Cham: Springer. P. 99–112.

27. Rani U.A., Ng L.Y., Ng C.Y., Mahmoudi E. A review of carbon quantum dots and their applications in wastewater treatment // Adv. Colloid Interface Sci. 2020. Vol. 278: 102124.

28. Efimova S.S., Khaleneva D.A., Litasova E.V., Piotrovskiy L.B., Ostroumova O.S. The mechanisms of action of water-soluble aminohexanoic and malonic adducts of fullerene C60 with hexamethonium on model lipid membranes // Biochim. Biophys. Acta Biomembr. 2020. Vol. 1862. N 11: 183433.

29. Moradlou O., Rabiei Z., Delavari N. Antibacterial effects of carbon quantum dots–hematite nanostructures deposited on titanium against gram-positive and gramnegative bacteria // J. Photochem. Photobiol. A: Chem. 2019. Vol. 379. P. 144–149.

30. Joshi P., Mishra R., Narayan R.J. Biosensing applications of carbon-based materials // Curr. Opin. Biomed. Eng. 2021. Vol. 18: 100274.

31. Li H.-Y., Li D., Guo Y., Yang Y., Wei W., Xie B. On-site chemosensing and quantification of Cr(VI) in industrial wastewater using one-step synthesized fluorescent carbon quantum dots // Sens. Actuators B Chem. 2018. Vol. 277. P. 30–38.

32. Fallah Z., Zare E.N., Ghomi M., Ahmadijokani F., Amini M., Tajbakhsh M., Arjmand M., Sharma G., Ali H., Ahmad A., Makvandi P., Lichtfouse E., Sillanpää M., Varma R.S. Toxicity and remediation of pharmaceuticals and pesticides using metal oxides and carbon nanomaterials // Chemosphere. 2021. Vol. 275: 130055.

33. Velasco-Santos C., Martinez-Hernández A.L., Consultchi A., Rodriguez R., Castaño V.M. Naturally produced carbon nanotubes // Chem. Phys. Lett. 2003. Vol. 373. N 3–4. P. 272–276.

34. Bäuerlein P.S., Emke E., Tromp P., Hofman J.A.M.H., Carboni A., Schooneman F., de Voogt P., van Wezel A.P. Is there evidence for man-made nanoparticles in the Dutch environment? // Sci. Total Environ. 2017. Vol. 576. P. 273–283.

35. De Marchi L., Pretti C., Gabriel B., Marques P.A.A.P., Freitas R., Neto V. An overview of graphene materials: properties, applications and toxicity on aquatic environments // Sci. Total Environ. 2018. Vol. 631. P. 1440–1456.

36. Di Felice G., Colombo P. Nanoparticle-allergen complexes for allergen immunotherapy // Int. J. Nanomed. 2017. Vol. 12. P. 4493–4504.

37. Singh S.P., Chinde S., Kamal S.S., Rahman M.F., Mahboob M., Grover P. Genotoxic effects of chromium oxide nanoparticles and microparticles in Wistar rats after 28 days of repeated oral exposure // Environ. Sci. Pollut. Res. Int. 2016. Vol. 23. N 4. P. 3914–3924.

38. Liu F., Chang X., Tian M., Zhu A., Zou L., Han A., Su L., Li S., Sun Y. Nano NiO induced liver toxicity via activating the NF-κB signaling pathway in rats // Toxicol. Res. 2017. Vol. 6. N 2. P. 242–250.

39. Shabbir S., Kulyar M.F. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population // Bionanoscience. 2021. Vol. 11. N 2. P. 621–632.

40. Baranowska-Wójcik E., Szwajgier D., Oleszczuk P., Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health-a review // Biol. Trace Elem. Res. 2020. Vol. 193. N 1. P. 118–129.

41. Wu T., Tang M. The inflammatory response to silver and titanium dioxide nanoparticles in the central nervous system // Nanomedicine. 2018. Vol. 13. N 2. P. 233–249.

42. Sarma S.J., Bhattacharya I., Brar S.K., Tyagi R.D., Surampalli R.Y. Carbon nanotube–bioaccumulation and recent advances in environmental monitoring // Crit. Rev. Environ. Sci. Technol. 2015. Vol. 45. N 9. P. 905–938.

43. Khaliullin T.O., Yanamala N., Newman M.S., Kisin E.R., Fatkhutdinova L.M., Shvedova A.A. Comparative analysis of lung and blood transcriptomes in mice exposed to multi-walled carbon nanotubes // Toxicol. Appl. Pharmacol. 2020. Vol. 390: 114898.

44. Adedara I.A., Anao O.O., Forcados G.E., Awogbindin I.O., Agbowo A., Ola-Davies O.E., Patlolla A.K., Tchounwou P.B., Farombi E.O. Low doses of multi-walled carbon nanotubes elicit hepatotoxicity in rats with markers of oxidative stress and induction of pro-inflammatory cytokines // Biochem. Biophys. Res. Comm. 2018. Vol. 503. N 4. P. 3167–3173.

45. Liu X., Liu T., Song J., Hai Y., Luan F., Zhang H., Yuan Y., Li H., Zhao C. Understanding the interaction of single-walled carbon nanotube (SWCNT) on estrogen receptor: A combined molecular dynamics and experimental study // Ecotoxicol. Environ. Saf. 2019. Vol. 172. P. 373–379.

46. Sasidharan A., Swaroop S., Koduri C.K., Girish C.M., Chandran P., Panchakarla L.S., Somasundaram V.H., Gowd G.S., Nair S., Koyakutty M. Comparative in vivo toxicity, organ biodistribution and immune response of pristine, carboxylated and PEGylated few-layer graphene sheets in Swiss albino mice: a three month study // Carbon. 2015. Vol. 95. P. 511–524.

47. An W., Zhang Y., Zhang X., Li K., Kang Y., Akhtar S., Sha X., Gao L. Ocular toxicity of reduced graphene oxide or graphene oxide exposure in mouse eyes // Exp. Eye Res. 2018. Vol. 174. P. 59–69.

48. Cupi D., Hartmann N.B., Baun A. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions // Ecotoxicol. Environ. Saf. 2016. Vol. 127. P. 144–152.

49. Wang F., Guan W., Xu L., Ding Z., Ma H., Ma A., Terry N. Effects of nanoparticles on algae: adsorption, distribution, ecotoxicity and fate // Appl. Sci. 2019. Vol. 9. N 8: 1534.

50. Lee S., Kim K., Shon H.K., Kim S.D., Cho J. Biotoxicity of nanoparticles: effect of natural organic matter // J. Nanopart. Res. 2011. Vol. 13. N 7. P. 3051–3061.

51. Levard C., Hotze E.M., Lowry G.V., Brown G.E. Environmental transformations of silver nanoparticles: impact on stability and toxicity // Environ. Sci. Technol. 2012. Vol. 46. N 13. P. 6900–6914.

52. Wang Z., Zhang L., Zhao J., Xing B. Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter // Environ. Sci. Nano. 2016. Vol. 3. N 2. P. 240–255.

53. Collin B., Tsyusko O.V., Starnes D.L., Unrine J.M. Effect of natural organic matter on dissolution and toxicity of sulfidized silver nanoparticles to Caenorhabditis elegans // Environ. Sci. Nano. 2016. Vol. 3. N 4. P. 728–736.

54. Li L., Fernández-Cruz M., Connolly M., Schuster M., Navas J. Dissolution and aggregation of Cu nanoparticles in culture media: effects of incubation temperature and particles size // J. Nanopart. Res. 2015. Vol. 17. N 1: 38.

55. Fu L., Hamzeh M., Dodard S., Zhao Y., Sunahara G. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation // Environ. Toxicol. Pharmacol. 2015. Vol. 39. N 3. P. 1074–1080.

56. Zhao J., Cao X., Liu X., Wang Z., Zhang C., White J.C., Xing B. Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: adhesion, uptake, and toxicity // Nanotoxicol. 2016. Vol. 10. N 9. P. 1297–1305.

57. Wang Z., Zhang F., Vijver M.G., Peijnenburg W.J.G.M. Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide // Chemosphere. 2021. Vol. 276: 130015.

58. Zhao J., Cao X., Wang Z., Dai Y., Xing B. Mechanistic understanding toward the toxicity of graphenefamily materials to freshwater algae // Water Res. 2017. Vol. 111. P. 18–27.

59. Tao X., Yu Y., Fortner J.D., He Y., Chen Y., Hughes J.B. Effects of aqueous stable fullerene nanocrystal (nC60) on Scenedesmus obliquus: Evaluation of the sub-lethal photosynthetic responses and inhibition mechanism // Chemosphere. 2015. Vol. 122. P. 162–167.

60. Kwok K.W., Leung K.M., Flahaut E., Cheng J., Cheng S.H. Chronic toxicity of double-walled carbon nanotubes to three marine organisms: influence of different dispersion methods // Nanomedicine. 2010. Vol. 5. N 6. P. 951–961.

61. Lukhele L.P., Mamba B.B., Musee N., Wepener V. Acute toxicity of double-walled carbon nanotubes to three aquatic organisms // J. Nanomater. 2015. Vol. 2015. N 3: 219074.

62. Fan W., Liu Y., Xu Z., Wang X., Li X., Luo S. The mechanism of chronic toxicity to Daphnia magna induced by graphene suspended in a water column // Environ. Sci. Nano. 2016. Vol. 3. N 6. P. 1405–1415.

63. Tervonen K., Waissi G., Petersen E.J., Akkanen J., Kukkonen J.V.K. Analysis of fullerene-C60 and kinetic measurements for its accumulation and depuration in Daphnia magna // Environ. Toxicol. Chem. 2010. Vol. 29. N 5. P. 1072–1078.

64. De Marchi L., Neto V., Pretti C., Figueira E., Chiellini F., Morelli A., Soares A.M.V.M., Freitas R. Toxic effects of multi-walled carbon nanotubes on bivalves: Comparison between functionalized and nonfunctionalized nanoparticles // Sci. Total Environ. 2018. Vol. 622. P. 1532–1542.

65. Bangeppagari M., Park S.H., Kundapur R.R., Lee S.J. Graphene oxide induces cardiovascular defects in developing zebrafish (Danio rerio) embryo model: In-vivo toxicity assessment // Sci. Total Environ. 2019. Vol. 673. P. 810–820.

66. Prakash J., Venkatesan M., Sebastian Prakash J, J., Bharath G., Anwer S., Veluswamy P., Prema D., Venkataprasanna K.S., Venkatasubbu G.D. Investigations on the invivo toxicity analysis of reduced graphene oxide/TiO2 nanocomposite in zebrafish embryo and larvae (Danio rerio) // Appl. Surf. Sci. 2019. Vol. 481. P. 1360–1369.

67. Souza J.P., Baretta J.F., Santos F., Paino I.M.M., Zucolotto V. Toxicological effects of graphene oxide on adult zebrafish (Danio rerio) // Aquat. Toxicol. 2017. Vol. 186. P. 11–18.

68. Audira G., Lee J.-S., Siregar P., Malhotra N., Rolden M.J., Huang J.C., Chen K.H., Hsu H.S., Hsu Y., Ger T.R., Hsiao C.D. Comparison of the chronic toxicities of graphene and graphene oxide toward adult zebrafish by using biochemical and phenomic approaches // Environ. Pollut. 2021. Vol. 278: 116907.

69. Malakootian M., Yaseri M., Faraji M. Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis // Environ. Sci. Pollut Res. 2019. Vol. 26. N 9. P. 8444–8458.

70. Li M., Liu W., Slaveykova V.I. Effects of mixtures of engineered nanoparticles and metallic pollutants on aquatic organisms // Environments. 2020. Vol. 7. N 4: 27.

71. Tang Y., Li S., Qiao J., Wang H., Li L. Synergistic effects of nano-sized titanium dioxide and zinc on the photosynthetic capacity and survival of Anabaena sp. // Int. J. Mol. Sci. 2013. Vol. 14. N 7. P. 14395–14407.

72. Wang D., Hu J., Irons D.R., Wang J. Synergistic toxic effect of nano-TiO and As(V) on Ceriodaphnia dubia // Sci. Total Environ. 2011. Vol. 409. N 7. P. 1351–1356.

73. Yang W.W., Li Y., Miao A.J., Yang L.Y. Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart // Ecotoxicol. Environ. Saf. 2012. Vol. 85. P. 44–51.

74. Hartmann N.B., Legros S., Von der Kammer F., Hofmann T., Baun A. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna // Aquat. Toxicol. 2012. Vol. 118–119. P. 1–8.

75. Peterson J.W., Burkhart R.S., Shaw D.C., Schuiling A.B., Haserodt M.J., Seymour M.D. Experimental determination of ampicillin adsorption to nanometer-size Al2O3 in water // Chemosphere. 2010. Vol. 80. N 11. P. 1268–1273.

76. Van Wieren E.M., Seymour M.D., Peterson J.W. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown // Sci. Total Environ. 2012. Vol. 441. P. 1–9.

77. Surwade P., Ghildyal C., Weikel C., Luxton T., Peloquin D., Fan X., Shah V. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA) // J. Antibiot. 2019. Vol. 72. N 1. P. 50–53.

78. Abo-Shama U.H., El-Gendy H., Mousa W.S., Hamouda R.A., Yousuf W.E., Hetta H.F., Abdeen E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms // Infect. Drug. Resist. 2020. Vol. 13. P. 351–362.

79. McShan D., Zhang Y., Deng H., Ray P.C., Yu H. Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104 // J. Environ. Sci. Health C: Environ. Carcinog. Ecotoxicol. Rev. 2015. Vol. 33. N 3. P. 369–384.

80. Windiasti G., Feng J., Ma L., Hu Y., Hakeem M.J., Amoako K., Delaquis P., Lu X. Investigating the synergistic antimicrobial effect of carvacrol and zinc oxide nanoparticles against Campylobacter jejuni // Food Control. 2019. Vol. 96. P. 39–46.

81. Hwang I.-S., Hwang J.H., Choi H., Kim K.-J., Lee D.G. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved // J. Med. Microbiol. 2012. Vol. 61. N 12. P. 1719–1726.

82. Sun C., Li W., Xu Y., Hu N., Ma J., Cao W., Sun S., Hu C., Zhao Y., Huang Q. Effects of carbon nanotubes on the toxicities of copper, cadmium and zinc toward the freshwater microalgae Scenedesmus obliquus // Aquat. Toxicol. 2020. Vol. 224: 105504.

83. Freixa A., Acuña V., Sanchís J., Farré M., Barceló D., Sabater S. Ecotoxicological effects of carbon based nanomaterials in aquatic organisms // Sci. Total. Environ. 2018. Vol. 619. P. 328–337.

84. Wang X., Qu R., Liu J., Wei Z., Wang L., Yang S., Huang Q., Wang Z. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: the role of catalyst impurities and adsorption capacity // Environ. Pollut. 2016. Vol. 208. P. 732–738.

85. Schwab F., Bucheli T.D., Camenzuli L., Magrez A., Knauer K., Sigg L., Nowack B. Diuron sorbed to carbon nanotubes exhibits enhanced toxicity to Chlorella vulgaris // Environ. Sci. Technol. 2013. Vol. 47. N 13. P. 7012–7019.

86. Jang M.-H., Hwang Y.S. Effects of functionalized multi-walled carbon nanotubes on toxicity and bioaccumulation of lead in Daphnia magna // PLoS One. 2018. Vol. 13. N 3: e0194935.

87. Zhang C., Chen X., Tan L., Wang J. Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum // Environ. Sci. Pollut. Res. 2018. Vol. 25. N 13. P. 13127–13133.

88. Song B., Xu P., Zeng G., Gong J., Wang X., Yan J., Wang S., Zhang P., Cao W., Ye S. Modeling the transport of sodium dodecyl benzene sulfonate in riverine sediment in the presence of multi-walled carbon nanotubes // Water Res. 2018. Vol. 129. P. 20–28.

89. Sun Y., Liu X., Lv X., Wang T., Xue B. Synthesis of novel lignosulfonate-modified graphene hydrogel for ultrahigh adsorption capacity of Cr(VI) from wastewater // J. Clean. Prod. 2021. Vol. 295: 126406.

90. Chenab K.K., Sohrabi B., Jafari A., Ramakrishna S. Water treatment: functional nanomaterials and applications from adsorption to photodegradation // Mater. Today Chem. 2020. Vol. 16: 100262.

91. Martín-de-Lucía I., Campos-Mañas M.C., Agüera A., Leganés F., Fernández-Piñas F., Rosal R. Combined toxicity of graphene oxide and wastewater to the green alga Chlamydomonas reinhardtii // Environ. Sci. Nano. 2018. Vol. 5. P. 1729–1744.

92. Zhang X., Liu Y. Nanomaterials for radioactive wastewater decontamination // Environ. Sci. Nano. 2020. Vol. 7. N 4. P. 1008–1040.

93. Mubarak N.M., Sahu J.N., Abdullah E.C., Jayakumar N.S., Ganesan P. Microwave-assisted synthesis of multi-walled carbon nanotubes for enhanced removal of Zn(II) from wastewater // Res. Chem. Intermed. 2016. Vol. 42. N 4. P. 3257–3281.

94. Miao A.-J., Luo Z., Chen C.-S., Chin W.-C., Santschi P.H., Quigg A. Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica // PloS One. 2010. Vol. 5. N 12: e15196.

95. Mahana A., Guliy O.I., Mehta S.K. Accumulation and cellular toxicity of engineered metallic nanoparticle in freshwater microalgae: current status and future challenges // Ecotoxicol. Environ. Saf. 2021. Vol. 208: 111662.

96. Chen J., Li H., Han X., Wei X. Transmission and accumulation of nano-TiO2 in a 2-step food chain (Scenedesmus obliquus to Daphnia magna) // Bull. Environ. Contam. Toxicol. 2015. Vol. 95. N 2. P. 145–149.

97. Mariano S., Panzarini E., Inverno M.D., Voulvoulis N., Dini L. Toxicity, Bioaccumulation and biotransformation of glucose-capped silver nanoparticles in green microalgae Chlorella vulgaris // Nanomaterials. 2020. Vol. 10. N 7: 1377.

98. Kalman J., Paul K., Khan F., Stone V., Fernandes T. Characterisation of bioaccumulation dynamics of three differently coated silver nanoparticles and aqueous silver in a simple freshwater food chain // Environ. Chem. 2015. Vol. 12. N 6. P. 662–672.

99. Ribeiro F., Gallego-Urrea J.A., Goodhead R.M., Van Gestel C.A., Moger J., Soares A.M., Loureiro S. Uptake and elimination kinetics of silver nanoparticles and silver nitrate by Raphidocelis subcapitata: The influence of silver behaviour in solution // Nanotoxicol. 2015. Vol. 9. N 6. P. 686–695.

100. Chen F., Xiao Z., Yue L., Wang J., Feng Y., Zhu X., Wang Z., Xing B. Algae response to engineered nanoparticles: current understanding, mechanisms and implications // Environ. Sci. Nano. 2019. Vol. 6. N 4. P. 1026–1042.

101. Oh N., Park J.-H. Endocytosis and exocytosis of nanoparticles in mammalian cells // Int. J. Nanomed. 2014. Vol. 9. Suppl. 1. P. 51–63.

102. Wang S., Lv J., Ma J., Zhang, S. Cellular internalization and intracellular biotransformation of silver nanoparticles in Chlamydomonas reinhardtii // Nanotoxicol. 2016. Vol. 10. N 8. P. 1129–1135.

103. Bakaraki Turan N., Sari H., Onkal Engin G., Bilgili M. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity–a review // Process Saf. Environ. Prot. 2019. Vol. 130. P. 238–249.

104. Mortimer M., Petersen E.J., Buchholz B.A., Orias E., Holden P.A. Bioaccumulation of multiwall carbon nanotubes in Tetrahymena thermophila by direct feeding or trophic transfer // Environ. Sci. Technol. 2016. Vol. 50. N 16. P. 8876–8885.

105. Allen B.L., Kichambare P.D., Gou P., Vlasova I.I., Kapralov A.A., Konduru N., Kagan V.E., Star A. Biodegradation of single-walled carbon nanotubes through enzymatic catalysis // Nano Lett. 2008. Vol. 8. N 11. P. 3899–3903.


Review

For citations:


Gusev A.A., Zakharova O.V., Vasyukova I.A., Evtushenko N.A., Vasilieva S.G., Lukyanov A.A., Lobakova E.S., Skripnikova E.V., Solovchenko A.E. Nanoparticles in the aquatic environment: the risks associated with them and the possibilities of their mitigation with microalgae. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2021;76(4):202-212. (In Russ.)

Views: 378


ISSN 0137-0952 (Print)