Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Нейтрофилы – атипичные антигенпрезентирующие клетки

https://doi.org/10.55959/MSU0137-0952-16-78-2-8

Аннотация

Нейтрофилы представляют собой наиболее многочисленные лейкоциты крови и являются «первой линией» защиты от патогенов в очаге воспаления, где осуществляют такие эффекторные функции, как фагоцитоз, дегрануляция, генерация активных форм кислорода и образование нейтрофильных внеклеточных ловушек. Долгое время считалось, что нейтрофилы являются короткоживущими терминально дифференцированными фагоцитами. Однако эта точка зрения изменилась после того, как было обнаружено, что нейтрофилы способны взаимодействовать с другими популяциями лейкоцитов, а также отвечать за связь между врожденным и адаптивным иммунитетом. В последние годы накопилось много данных, указывающих на способность нейтрофилов приобретать функцию антигенпрезентирующих клеток при патологических и воспалительных состояниях. Кроме того, нейтрофилы могут экспрессировать молекулы главного комплекса гистосовместимости класса II и костимулирующие молекулы при воздействии специфических цитокинов в системе in vitro и активировать Т-лимфоциты. В обзоре обобщены сведения последних лет об антигенпрезентирующей функции нейтрофилов, предполагаемых механизмах регуляции этого процесса и его значении в норме и патологии.

Об авторе

Н. В. Воробьева
Московский государственный университет имени М.В. Ломоносова
Россия

Воробьева Нина Викторовна – канд. биол. наук, ст. науч. сотр. кафедры иммунологии биологического факультета. Тел.: 8-495-939-46-46

119234, г. Москва, Ленинские горы, д. 1, стр. 12



Список литературы

1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535.

2. Borregaard N., Sørensen O.E., Theilgaard-Mönch K. Neutrophil granules: a library of innate immunity proteins. Trends Immunol. 2007;28(8):340–345.

3. Price T.H., Chatta G.S., Dale D.C. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood. 1996;88(1):335–340.

4. Galli S.J., Borregaard N., Wynn T.A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 2011;12(11):1035–1044.

5. Dancey J.T., Deubelbeiss K.A., Harker L.A., Finch C.A. Neutrophil kinetics in man. J. Clin. Invest. 1976;58(3):705–715.

6. Martin C., Burdon P.C., Bridger G., GutierrezRamos J.C., Williams T.J., Rankin S.M. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583–593.

7. Westman J., Grinstein S., Marques P.E. Phagocytosis of necrotic debris at sites of injury and inflammation. Front. Immunol. 2020;10:3030.

8. Dalli J., Montero-Melendez T., Norling L.V., Yin X., Hinds C., Haskard D., Mayr M., Perretti M. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties. Mol. Cell. Proteomics. 2013;12(8):2205–2219.

9. Polak D., Hafner C., Briza P., Kitzmüller C., ElbeBürger A., Samadi N., Gschwandtner M., Pfützner W., Zlabinger G.J., Jahn-Schmid B., Bohle B. A novel role for neutrophils in IgE-mediated allergy: Evidence for antigen presentation in late-phase reactions. J. Allergy Clin. Immunol. 2019;143(3):1143–1152.e4.

10. Oehler L., Majdic O., Pickl W.F., Stöckl J., Riedl E., Drach J., Rappersberger K., Geissler K., Knapp W. Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J. Exp. Med. 1998;187(7):1019–1028.

11. Hayashi F., Means T.K., Luster A.D. Toll-like receptors stimulate human neutrophil function. Blood. 2003;102(7):2660–2669.

12. Metzemaekers M., Gouwy M., Proost P. Neutrophil chemoattractant receptors in health and disease: doubleedged swords. Cell. Mol. Immunol. 2020;17(5):433–450.

13. Nauseef W.M. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 2007;219(1):88–102.

14. Liew P.X., Kubes P. The neutrophil’s role during health and disease. Physiol. Rev. 2019;99(2):1223–1248.

15. Steinberg B.E., Grinstein S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE. 2007;2007(379):pe11.

16. Vorobjeva N.V., Chernyak B.V. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc.). 2020;85(10):1178–1190.

17. Vorobjeva N.V. Neutrophil extracellular traps: New aspects. Moscow Univ. Biol. Sci. Bull. 2020;75(4):173–188.

18. Vorobjeva N., Dagil Y., Pashenkov M., Pinegin B., Chernyak B. Protein kinase C isoforms mediate the formation of neutrophil extracellular traps. Int. Immunopharmacol. 2023;114: 109448.

19. Pinegin B., Vorobjeva N., Pinegin V. Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun. Rev. 2015;14(7):633–640.

20. Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: facts beyond expression. Front. Immunol. 2014;5:508.

21. Robertson A.L., Holmes G.R., Bojarczuk A.N., et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci. Transl. Med. 2014;6(225):225ra29.

22. Scapini P., Cassatella M.A. Social networking of human neutrophils within the immune system. Blood. 2014;124(5):710–719.

23. Tsuboi N., Asano K., Lauterbach M., Mayadas T.N. Human neutrophil Fcgamma receptors initiate and play specialized nonredundant roles in antibody-mediated inflammatory diseases. Immunity. 2008;28(6):833–846.

24. Puga I., Cols M., Barra C.M., et al. B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat. Immunol. 2011;13(2):170–180.

25. Pelletier M., Maggi L., Micheletti A., Lazzeri E., Tamassia N., Costantini C., Cosmi L., Lunardi C., Annunziato F., Romagnani S., Cassatella M.A. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood. 2010;115(2):335–343.

26. Kambayashi T., Laufer T.M. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat. Rev. Immunol. 2014;14(11):719–730.

27. Reis e Sousa C. Dendritic cells in a mature age. Nat. Rev. Immunol. 2006;6(6):476–483.

28. Takashima A., Yao Y. Neutrophil plasticity: acquisition of phenotype and functionality of antigenpresenting cell. J. Leukoc. Biol. 2015;98(4):489–496.

29. Vono M., Lin A., Norrby-Teglund A., Koup R.A., Liang F., Loré K. Neutrophils acquire the capacity for antigen presentation to memory CD4+ T cells in vitro and ex vivo. Blood. 2017;129(14):1991–2001.

30. Harding C.V., Unanue E.R. Quantitation of antigenpresenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature. 1990;346(6284):574–576.

31. Gosselin E.J., Wardwell K., Rigby W.F., Guyre P.M. Induction of MHC class II on human polymorphonuclear neutrophils by granulocyte/macrophage colony-stimulating factor, IFN-gamma, and IL-3. J. Immunol. 1993;151(3):1482–1490.

32. Radsak M., Iking-Konert C., Stegmaier S., Andrassy K., Hänsch G.M. Polymorphonuclear neutrophils as accessory cells for T-cell activation: major histocompatibility complex class II restricted antigen-dependent induction of T-cell proliferation. Immunology. 2000;101(4):521–530.

33. Matsushima H., Geng S., Lu R., Okamoto T., Yao Y., Mayuzumi N., Kotol P.F., Chojnacki B.J., Miyazaki T., Gallo R.L., Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood. 2013;121(10):1677–1689.

34. Oehler L., Majdic O., Pickl W.F., Stöckl J., Riedl E., Drach J., Rappersberger K., Geissler K., Knapp W. Neutrophil granulocyte-committed cells can be driven to acquire dendritic cell characteristics. J. Exp. Med. 1998;187(7):1019–1028.

35. Iking-Konert C., Csekö C., Wagner C., Stegmaier S., Andrassy K., Hänsch G.M. Transdifferentiation of polymorphonuclear neutrophils: acquisition of CD83 and other functional characteristics of dendritic cells. J. Mol. Med. (Berl.). 2001;79(8):464–474.

36. Spagnoli G.C., Juretic A., Rosso R., Van Bree J., Harder F., Heberer M. Expression of HLA-DR in granulocytes of polytraumatized patients treated with recombinant human granulocyte macrophage-colonystimulating factor. Hum. Immunol. 1995;43(1):45–50.

37. Sandilands G.P., McCrae J., Hill K., Perry M., Baxter D. Major histocompatibility complex class II (DR) antigen and costimulatory molecules on in vitro and in vivo activated human polymorphonuclear neutrophils. Immunology. 2006;119(4):562–571.

38. Cross A., Bucknall R.C., Cassatella M.A., Edwards S.W., Moots R.J. Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis Rheum. 2003;48(10):2796–2806.

39. Iking-Konert C., Vogt S., Radsak M., Wagner C., Hänsch G.M., Andrassy K. Polymorphonuclear neutrophils in Wegener’s granulomatosis acquire characteristics of antigen presenting cells. Kidney Int. 2001;60(6):2247–2262.

40. Müller I., Munder M., Kropf P., Hänsch G.M. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol. 2009;30(11):522–530.

41. Sandilands G.P., Hauffe B., Loudon E., Marsh A.G., Gondowidjojo A., Campbell C., Ferrier R.K., Rodie M.E. Detection of cytoplasmic CD antigens within normal human peripheral blood leucocytes. Immunology. 2003;108(3):329–337.

42. Sandilands G.P., Ahmed Z., Perry N., Davison M., Lupton A., Young B. Cross-linking of neutrophil CD11b results in rapid cell surface expression of molecules required for antigen presentation and T-cell activation. Immunology. 2005;114(3):354–368.

43. van den Elsen P.J. Expression regulation of major histocompatibility complex class I and class II encoding genes. Front. Immunol. 2011;2:48.

44. Berard M., Tough D.F. Qualitative differences between naïve and memory T cells. Immunology. 2002;106(2):127–138.

45. Ethuin F., Gérard B., Benna J.E., Boutten A., Gougereot-Pocidalo M.A., Jacob L., Chollet-Martin S. Human neutrophils produce interferon gamma upon stimulation by interleukin-12. Lab. Invest. 2004;84(10):1363–1371.

46. Abi Abdallah D.S., Egan C.E., Butcher B.A., Denkers E.Y. Mouse neutrophils are professional antigenpresenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int. Immunol. 2011;23(5):317–326.

47. Feuk-Lagerstedt E., Jordan E.T., Leffler H., Dahlgren C., Karlsson A. Identification of CD66a and CD66b as the major galectin-3 receptor candidates in human neutrophils. J. Immunol. 1999;163(10):5592–5598.

48. Pantouris G., Syed M.A., Fan C., Rajasekaran D., Cho T.Y., Rosenberg E.M. Jr., Bucala R., Bhandari V., Lolis E.J. An analysis of MIF structural features that control functional activation of CD74. Chem. Biol. 2015;22(9):1197–1205.

49. Tato M., Kumar S.V., Liu Y., Mulay S.R., Moll S., Popper B., Eberhard J.N., Thomasova D., Rufer A.C., Gruner S., Haap W., Hartmann G., Anders H.J. Cathepsin S inhibition combines control of systemic and peripheral pathomechanisms of autoimmune tissue injury. Sci. Rep. 2017;7(1):2775.

50. Nordenfelt P., Tapper H. Phagosome dynamics during phagocytosis by neutrophils. J. Leukoc. Biol. 2011;90(2):271–284.

51. Воробьева Н.В. Молекулярные механизмы фагоцитоза. Часть 1. Рос. иммунол. журн. 2014;8(2):107–120.

52. Fernando M.M., Stevens C.R., Walsh E.C., De Jager P.L., Goyette P., Plenge R.M., Vyse T.J., Rioux J.D. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet. 2008;4(4):e1000024.

53. Potter N.S., Harding C.V. Neutrophils process exogenous bacteria via an alternate class I MHC processing pathway for presentation of peptides to T lymphocytes. J. Immunol. 2001;167(5):2538–2546.

54. Beauvillain C., Delneste Y., Scotet M., Peres A., Gascan H., Guermonprez P., Barnaba V., Jeannin P. Neutrophils efficiently cross-prime naive T cells in vivo. Blood. 2007;110(8):2965–2973.

55. Davey M.S., Morgan M.P., Liuzzi A.R., Tyler C.J., Khan M.W.A., Szakmany T., Hall J.E., Moser B., Eberl M. Microbe-specific unconventional T cells induce human neutrophil differentiation into antigen cross-presenting cells. J. Immunol. 2014;193(7):3704–3716.

56. Singhal S., Bhojnagarwala P.S., O’Brien S., Moon E.K., Garfall A.L., Rao A.S., Quatromoni J.G., Stephen T.L., Litzky L., Deshpande C., Feldman M.D., Hancock W.W., Conejo-Garcia J.R., Albelda S.M., Eruslanov E.B. Origin and role of a subset of tumorassociated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell. 2016;30(1):120–135.

57. Hampton H.R., Chtanova T. The lymph node neutrophil. Semin. Immunol. 2016;28(2):129–136.

58. Abadie V., Badell E., Douillard P., Ensergueix D., Leenen P.J., Tanguy M., Fiette L., Saeland S., Gicquel B., Winter N. Neutrophils rapidly migrate via lymphatics after Mycobacterium bovis BCG intradermal vaccination and shuttle live bacilli to the draining lymph nodes. Blood. 2005;106(5):1843–1850.

59. Liang F., Lindgren G., Sandgren K.J., Thompson E.A., Francica J.R., Seubert A., De Gregorio E., Barnett S., O’Hagan D.T., Sullivan N.J., Koup R.A., Seder R.A., Loré K. Vaccine priming is restricted to draining lymph nodes and controlled by adjuvant-mediated antigen uptake. Sci. Transl. Med. 2017;9(393):eaal2094.


Рецензия

Для цитирования:


Воробьева Н.В. Нейтрофилы – атипичные антигенпрезентирующие клетки. Вестник Московского университета. Серия 16. Биология. 2023;78(2):55-63. https://doi.org/10.55959/MSU0137-0952-16-78-2-8

For citation:


Vorobjeva N.V. Neutrophils are atypical antigen-presenting cells. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(2):55-63. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-2-8

Просмотров: 508


ISSN 0137-0952 (Print)