Peculiarity of marker genes’ expression in bank voles Clethrionomys glareolus characterizing ecotoxicity effects of the territory contaminated with dioxins
https://doi.org/10.55959/MSU0137-0952-16-78-2-6
Abstract
To assess the ecotoxicity of low doses of dioxins is almost impossible without considering the influence of real exposure conditions on these substances’ properties. The best approach to take these into account is the biomonitoring of the initial toxic effects’ manifestation. We studied bank voles from population naturally exposed to dioxins, the summer-born adults and overwintered functional groups of animals differed by dioxin body burden. Dioxin-free samples of a vivarium bank voles’ line served as a control. Initial effects of ecotoxicity were characterized by transcriptional levels of genetic markers: ahr, cyp1a2, keap1, dnmt1, dnmt3a, dnmt3b, LINE-1 and B1-SINE. Summer-born functional group had significantly higher expression levels of ahr, keap1, dnmt3a and dnmt3b genes versus their control group. Overwintered functional group had elevated expression levels of cyp1a2 and keap1, but no changes were found versus controls for dnmt1, LINE-1 and SINE B1. The increased expression of marker genes in dioxin-exposed voles was quite well associated with toxic process’ mechanisms – their formation and progression under exposure of several generations to low sub-toxic doses. The data obtained will contribute to the development of a biomonitoring method for assessing the initial effects of dioxin ecotoxicity.
About the Authors
A. R. LavrenovRussian Federation
Department of Genetics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234;
33 Leninsky Prospect, Moscow, 119071
T. A. Myshliavkina
Russian Federation
Department of Genetics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234;
33 Leninsky Prospect, Moscow, 119071
N. V. Umnova
Russian Federation
33 Leninsky Prospect, Moscow, 119071
A. I. Kim
Russian Federation
Department of Genetics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234;
Dayun New Town, Longgang District, Shenzhen, Guangdong Province, P.R., 518172, China
V. S. Roumak
Russian Federation
Department of Genetics, Faculty of Biology
1–12 Leninskie gory, Moscow, 119234;
33 Leninsky Prospect, Moscow, 119071
References
1. Розанов В.Н., Трегер Ю.А. Оценка выбросов диоксинов основных источников в РФ. Экол. пром. России. 2011;(2):32–35.
2. Софронов Г.А., Рембовский В.Р., Радилов А.С., Могиленкова Л.А. Современные взгляды на механизм токсического действия диоксинов и их санитарногигиеническое нормирование. Мед. акад. журн. 2019;19(1):17–28.
3. Румак В.С., Умнова Н.В. Диоксины и безопасность биосиситем: результаты натурных исследований. Жизнь Земли. 2018;40(3):308–324.
4. Безель В.С. Основы экологической токсикологии. Общая токсикология. Под ред. Б.А. Курляндского и В.А. Филова. М.: Медицина; 2002:545–586.
5. Баранов В.С., Баранова Е.В. Геном человека, эпигенетика многофакторных болезней и персонифицированная медицина. Биосфера. 2012;4(1):76–85.
6. Лавренов А.Р., Орджоникидзе К.Г., Румак В.С., Ким А.И., Умнова Н.В. Оценка начальных проявлений токсического процесса в условиях хронического действия малых субтоксичных доз диоксинов, загрязняющих среду. Экол. чел. 2022;(3):54–63.
7. Kwon Y.-J., Shin S., Chun Y.-J. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch. Pharm. Res. 2021;44(1):63–83.
8. Larigot L., Juricek L., Dairou J., Coumoul X. AhR signaling pathways and regulatory functions. Biochim. Open. 2018;7:1–9.
9. Quattrochi L.C., Vu T., Tukey R.H. The human CYP1A2 gene and induction by 3-methylcholanthrene. A region of DNA that supports AH-receptor binding and promoter-specific induction. J. Biol. Chem. 1994;269(9):6949–6954.
10. Turpaev K.T. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc.). 2013;78(2):111–126.
11. Akemann C., Meyer D.N., Gurdziel K., Baker T.R. Developmental dioxin exposure alters the methylome of adult male zebrafish gonads. Front. Genet. 2019;9:719.
12. Aluru N., Kuo E., Helfrich L.W., Karchner S.I., Linney E.A., Pais J.E., Franks D.G. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio). Toxicol. Appl. Pharmacol. 2015;284(2):142–151.
13. Zhang Y., Liu C., Cheng H., Tian S., Liu Y., Wang S., Zhang H., Saqib M., Wei H., Wei Z. DNA methylation and its effects on gene expression during primary to secondary growth in poplar stems. BMC Genomics. 2020;21(1):498.
14. Румак В.С., Умнова Н.В. Биомониторинг состояния загрязненной диоксинами среды в окрестностях свалки: к минимизации риска для здоровья населения. Хим. безопасн. 2020;4(2):68–79.
15. Roumak V.S., Popov V.S., Shelepchikov A.A., Osipova O.V., Umnova N.V. Seasonal peculiarities of PCDD/Fs levels in bank voles inhabiting sites in the vicinity of the landfill with municipal wastes (Moscow, Russia). Environ. Sci. Pollut. Res. 2022;29(35):52796–52805.
16. A textbook of modern toxicology. 4th ed. Ed. E. Hodgson. Hoboken: John Wiley & Sons; 2010. 648 pp.
17. Roumak V.S., Levenkova E.S., Umnova N.V., Popov V.S., Turbabina K.A., Shelepchikov A.A. The content of dioxins and furans in soils, bottom sediments of water bodies, and tissues of small mammals near the landfill site with municipal solid wastes (Moscow, Russia). Environ. Sci. Pollut. Res. 2018;25(29):29379–29386.
18. Оленев Г.В., Григоркина Е.Б. Функциональные закономерности жизнедеятельности популяций грызунов в зимний период. Экология. 2014;(6):428–428.
19. Куценко С.А. Основы токсикологии. СПб.: Воен.-мед. акад. им. С.М. Кирова; 2002. 395 c.
20. Stading R., Chu C., Couroucli X., Lingappan K., Moorthy B. Molecular role of cytochrome P4501A enzymes in oxidative stress. Curr. Opin. Toxicol. 2020;20–21:77–84.
21. Puga A., Ma C., Marlowe J.L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem. Pharmacol. 2009;77(4):713–722.
22. Алексеев В.Б., Зайцева Н.В., Устинова О.Ю., Клейн С.В. Оценка диоксиновой нагрузки биосред быстрого и медленного обменов у населения промышленно развитого региона. Вестн. Перм. ун-та. Сер. Биол. 2009;(10):180–182.
23. Ревич Б.А., Сотсков Ю.П., Клюев Н.А., Бродский Е.С., Липченко Ю.Н., Музуров И.В., Зейлерт В.Ю. Диоксины в окружающей среде, в крови и грудном молоке жителей города Чапаевска. Гиг. санитар. 2001;(6):6–11.
24. Амирова З.К., Шахтамиров И.Я. Содержание ПХДД/ф и ПХБ-ВОЗ в плазме крови и грудном молоке жителей Чеченской республики. Юг России: экол. развит. 2012;(2):125–129.
25. Maekawa F., Shimba S., Takumi S., Sano T., Suzuki T., Bao J., Ohwada M., Ehara T., Ogawa Y., Nohara K. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics. 2012;7(9):1046–1056.
26. Fatemi M., Hermann A., Gowher H., Jeltsch A. Dnmt3a and Dnmt1 functionally cooperate during de novo methylation of DNA. Eur. J. Biochem. 2002;269(20):4981–4984.
27. Haggerty C., Kretzmer H., Riemenschneider C., Kumar A.S., Mattei A.L., Bailly N., Gottfreund J., Giesselmann P., Weigert R., Brändl B. Dnmt1 has de novo activity targeted to transposable elements. Nat. Struct. Mol. Biol. 2021;28(7):594–603.
28. Andersen M.E., Barton H.A. The use of biochemical and molecular parameters to estimate doseresponse relationships at low levels of exposure. Environ. Health Perspect. 1998;106(Suppl. 1):349–355.
29. Vandenberg L.N., Rayasam S.D., Axelrad D.A., Bennett D.H., Brown P., Carignan C.C., Chartres N., Diamond M.L., Joglekar R., Shamasunder B. Addressing systemic problems with exposure assessments to protect the public’s health. Environ. Health. 2023;21(Suppl. 1):121.
30. Andersen M.E., Conolly R.B. Mechanistic modeling of rodent liver tumor promotion at low levels of exposure: an example related to dose-response relationships for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Hum. Exp. Toxicol. 1998;17(12):683–690.
31. Bellezza I., Giambanco I., Minelli A., Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta – Mol. Cell Res. 2018;1865(5):721–733.
32. Min B., Park J.S., Jeong Y.S., Jeon K., Kang Y.-K. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res. 2020;48(15):8431–8444.
33. Astiz M., Heyde I., Oster H. Mechanisms of communication in the mammalian circadian timing system. Int. J. Mol. Sci. 2019;20(2):343.
34. Weger B.D., Gobet C., David F.P., Atger F., Martin E., Phillips N.E., Charpagne A., Weger M., Naef F., Gachon F. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc. Natl. Acad. Sci. U.S.A. 2021;118(3):e2015803118.
35. Atger F., Gobet C., Marquis J., Martin E., Wang J., Weger B., Lefebvre G., Descombes P., Naef F., Gachon F. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl. Acad. Sci. U.S.A. 2015;112(47):E6579–E6588.
36. Tischkau S.A. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signaling. Eur. J. Neurosci. 2020;51(1):379–395.
37. Паткин П.Е., Квинн Д. Эпигенетические механизмы предрасположенности к комплексным патологиям человека. Экол. генет. 2010;8(4):44–56.
38. Ferguson S.A., Maier K.L. A review of seasonal/circannual effects of laboratory rodent behavior. Physiol. Behav. 2013;119:130–136.
39. Liu R., Zacharewski T.R., Conolly R.B., Zhang Q. A physiologically based pharmacokinetic (PBPK) modeling framework for mixtures of dioxin-like compounds. Toxics. 2022;10(11):700.
40. Паткин Е.Л., Софронов Г.А. Эпигенетика популяций, экотоксикогенетика и болезни человека. Экол. генет. 2012;10(4):14–28.
41. Chapelle V., Silvestre F. Population epigenetics: The extent of DNA methylation variation in wild animal populations. Epigenomes. 2022;6(4):31.
42. Casacuberta E., González J. The impact of transposable elements in environmental adaptation. Mol. Ecol. 2013;22(6):1503–1517.
43. Habano W., Miura T., Terashima J., Ozawa S. Aryl hydrocarbon receptor as a DNA methylation reader in the stress response pathway. Toxicology. 2022;470:153154.
Review
For citations:
Lavrenov A.R., Myshliavkina T.A., Umnova N.V., Kim A.I., Roumak V.S. Peculiarity of marker genes’ expression in bank voles Clethrionomys glareolus characterizing ecotoxicity effects of the territory contaminated with dioxins. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(2):86-94. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-2-6