Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Disulfide bond patterns in the toxins of spiders of the Ctenidae family. Comparison with AlphaFold 2.0 predictions

https://doi.org/10.55959/MSU0137-0952-16-78-3S-3

Abstract

Wandering spiders (family Ctenidae) have multicomponent venoms in which more than 500 different peptides and proteins, called ctenitoxins, have been identified. The main components of the venom are cysteine-rich peptides containing an inhibitory cystine knot (ICK) motif. The pharmacological diversity of ctenitoxins allows us to consider some of them as prototypes for the development of new drugs for the treatment of chronic pain, Huntington’s disease, erectile dysfunction and glaucoma. According to the location of cysteine residues in the amino acid sequence, ctenitoxins are divided into 14 groups containing from 6 to 14 Cys residues. Currently, the spatial structure of only one ctenitoxin, ω-CNTX-Pn4a (Pha1β or Tx3-6) from the Brazilian wandering spider Phoneutria nigriventer, has been determined. Another 10 structural groups of ctenitoxins have homology with the known spatial structures of spider toxins of other families and other proteins, and for three groups the structural homologues are unknown. In this paper, we proposed possible disulfide bonding patterns for all groups of ctenitoxins. A comparison of the obtained schemes with the predictions of the AlphaFold 2.0 program shows that this neural network does not always correctly predict the structures of cysteine-rich peptides, especially if the structures of mature molecules without leader sequences are modeled.

About the Authors

P. A. Mironov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Miklukho-Maklaya 16/10, 117997, Moscow



Z. O. Shenkarev
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Russian Federation

Miklukho-Maklaya 16/10, 117997, Moscow



References

1. Richardson M., Pimenta A.M.C., Bemquerer M.P., Santoro M.M., Beirao P.S.L., Lima M.E., Figueiredo S.G., Bloch C. Jr., Vasconcelos E.A.R., Campos F.A.P., Gomes P.C., Cordeiro M.N. Comparison of the partial proteomes of the venoms of Brazilian spiders of the genus Phoneutria. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006;142(3–4):173–187.

2. Diniz M.R.V., Paiva A.L.B., Guerra-Duarte C., Nishiyama M.Y., Mudadu M.A., Oliveira U., Borges M.H., Yates J.R., Junqueira-de-Azevedo I.L. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PloS One. 2018;13(8):e0200628.

3. Brewer M.S., Cole T.J. Killer knots: Molecular evolution of inhibitor cystine knot toxins in Wandering spiders (Araneae: Ctenidae). Toxins. 2023;15(2):112.

4. Cardoso F.C., Walker A.A., King G.F., Gomez M.V. Holistic profiling of the venom from the Brazilian wandering spider Phoneutria nigriventer by combining high-throughput ion channel screens with venomics. Front. Mol. Biosci. 2023;10:1069764.

5. Peigneur S., Lima M.E., Tytgat J. Phoneutria nigriventer venom: A pharmacological treasure. Toxicon. 2018;151:96–110.

6. Lyukmanova E.N., Mironov P.A., Kulbatskii D.S., Shulepko M.A., Paramonov A.S., Chernaya E.M., Logashina Y.A., Andreev Y.A., Kirpichnikov M.P., Shenkarev Z.O. Recombinant production, NMR solution structure, and membrane interaction of the Phα1β toxin, a TRPA1 modulator from the Brazilian armed spider Phoneutria nigriventer. Toxins. 2023;15(6):378.

7. Tonello R., Fusi C., Materazzi S., Marone I.M., Logu F., Benemei S., Goncalves M.C., Coppi E., CastroJunior C.J., Gomez M.V., Geppetti P., Ferreira J., Nassini R. The peptide Phα1β, from spider venom, acts as a TRPA1 channel antagonist with antinociceptive effects in mice. Br. J. Pharmacol. 2017;174(1):57–69.

8. Kozlov S., Grishin E. Classification of spider neurotoxins using structural motifs by primary structure features. Single residue distribution analysis and pattern analysis techniques. Toxicon. 2005;46(6):672–686.

9. Leaver-Fay A., Tyka M., Lewis S.M., et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods in Enzymology. Computer Methods, Part C. Vol. 487. Eds. M.L. Johnson and L. Brand. Academic Press; 2011:545–574.

10. Shen Y., Maupetit J., Derreumaux P., Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J. Chem. Theor. Comput. 2014;10(10):4745–4758

11. Jumper, J., Evans, R., Pritzel, A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589.

12. Baek M., DiMaio F., Anishchenko I., et al. Accurate prediction of protein structures and interactions using a threetrack neural network. Science. 2021;373(6557):871–876.

13. Mirdita M., Schütze K., Moriwaki Y., Heo L., Ovchinnikov S., Steinegger M. ColabFold: making protein folding accessible to all. Nat. Methods. 2022;19(6):679–682.

14. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 1996;14(1):51–55.

15. Nadezhdin K.D., Romanovskaia D.D., Sachkova M.Y., Oparin P.B., Kovalchuk S.I., Grishin E.V., Arseniev A.S., Vassilevski A.A. Modular toxin from the lynx spider Oxyopes takobius: Structure of spiderine domains in solution and membrane-mimicking environment. Protein Sci. 2017;26(3):611–616.

16. Titaux-Delgado G., Carrillo E., Mendoza A., Mayorga-Flores M., Escobedo-González F.C., CanoSánchez P., López-Vera E., Corzo G., Del Rio-Portilla F. Successful refolding and NMR structure of rMagi3: A disulfide-rich insecticidal spider toxin. Protein Sci. 2018;27(3):692–701.

17. Korolkova Y., Maleeva E., Mikov A., Lobas A., Solovyeva E., Gorshkov M., Andreev Y., Peigneur S., Tytgat J., Kornilov F., Lushpa V., Mineev K., Kozlov S. New insectotoxin from Tibellus oblongus spider venom presents novel adaptation of ICK fold. Toxins. 2021;13(1):29.

18. Santos A.D., Imperial J.S., Chaudhary T., Beavis R.C., Chait B.T., Hunsperger J.P., Olivera B.M., Adams M.E., Hillyard D.R. Heterodimeric structure of the spider toxin omega-agatoxin IA revealed by precursor analysis and mass spectrometry. J. Biol. Chem. 1992;267(29):20701–20705.


Review

For citations:


Mironov P.A., Shenkarev Z.O. Disulfide bond patterns in the toxins of spiders of the Ctenidae family. Comparison with AlphaFold 2.0 predictions. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3S):13-20. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3S-3

Views: 133


ISSN 0137-0952 (Print)