Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Stabilization of full-length S-protein of SARS-Cov-2 coronavirus in SMA polymer for electron microscopy study

https://doi.org/10.55959/MSU0137-0952-16-78-3S-5

Abstract

A detergent-free protocol for purification of the coronavirus prefusion S-protein using styrenemaleic acid copolymer (SMA) was developed. Expression of the S-protein was carried out in HEK293T cells. Two solubilization methods were used to purify and prepare the S-protein for microscopy: in NP-40 detergent and as part of SMA. The resulting preparations were examined in an electron microscope, and the particles of purified S-proteins were classified. Analysis of two-dimensional projections of the particles showed that the use of lipodiscs for solubilization leads to lower mobility of the purified protein on the substrate, compared to the protein in the detergent, which may further contribute to obtaining higher resolutions when studying the structure of membrane proteins.

About the Authors

N. Yu. Mamaeva
Moscow State University
Russian Federation

Faculty of Biology

1–73 Leninskie Gory, 119234, Moscow



N. I. Derkacheva
A.I. Evdokimov Moscow State Medical and Dental University
Russian Federation

Department of Biochemistry

4 Dolgorukovskaya st., 127006, Moscow



D. A. Gasanova
Lomonosov Moscow State University
Russian Federation

3Department of Chemical Enzymology, Faculty of Chemistry

1–11 Leninskie Gory, 119234, Moscow



O. S. Sokolova
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–73 Leninskie Gory, 119234, Moscow



G. S. Glukhov
Shenzhen MSU-BIT University, 1 International University Park Road
China

Faculty of Biology

Dayun New Town, Longgang District, Shenzhen, 518172, Guangdong Province



References

1. Kudriavtsev A.V., Vakhrusheva A.V., Novoseletsky V.N., Bozdaganyan M.E., Shaitan K.V., Kirpichnikov M.P., Sokolova O.S. Immune escape associated with RBD Omicron mutations and SARS-CoV-2 evolution dynamics. Viruses. 2022;14(8):1603.

2. Bozdaganyan M.E., Shaitan K.V., Kirpichnikov M.P., Sokolova O.S., Orekhov P.S. Computational analysis of mutations in the receptor-binding domain of SARS-CoV-2 spike and their effects on antibody binding. Viruses. 2022;14(2):295.

3. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 2016;3:237–261.

4. Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–224.

5. Palsdottir H., Hunte C. Lipids in membrane protein structures. Biochim. Biophys. Acta Biomembr. 2004;1666(1-2):2–18.

6. Dörr J.M., Scheidelaar S., Koorengevel M.C., Dominguez J.J., Schäfer M., van Walree C.A., Killian J.A. The styrene–maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 2016;45(1):3–21.

7. Turoňová B., Sikora M., Schürmann C., et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Science. 2020;370(6513):203–208.

8. Garavito R.M., Ferguson-Miller S. Detergents as tools in membrane biochemistry. J. Biol. Chem. 2001;276(35):32403–32406.

9. Lichtenberg D., Ahyayauch H., Goñi F.M. The mechanism of detergent solubilization of lipid bilayers. Biophys. J. 2013;105(2):289–299.

10. Popot J.L., Althoff T., Bagnard D., Banères J.L., Bazzacco P., Billon-Denis E., Catoire L.J., Champeil P., Charvolin D., Cocco M.J., Cremel G. Amphipols from A to Z. Annu. Rev. Biophys. 2011;40:379–408.

11. Rigaud J.L., Lévy D. Reconstitution of membrane proteins into liposomes. Methods in Enzymology. Liposomes, Part B, vol. 372. Ed. N. Duzgunes. Academic Press; 2003: 65–86.

12. Ritchie T.K., Grinkova Y.V., Bayburt T.H., Denisov I.G., Zolnerciks J.K., Atkins W.M., Sligar S.G. Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods in Enzymology. Liposomes, Part F, vol. 464. Ed. N. Düzgünes. Academic Press; 2009:211–231.

13. Knowles T.J., Finka R., Smith C., Lin Y.P., Dafforn T., Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 2009;131(22):7484–7485.

14. Karlova M.G., Voskoboynikova N., Gluhov G.S., Abramochkin D., Malak O.A., Mulkidzhanyan A., Loussouarn G., Steinhoff H.J., Shaitan K.V., Sokolova O.S. Detergent-free solubilization of human Kv channels expressed in mammalian cells. Chem. Phys. Lipids. 2019;219:50–57.

15. Punjani A., Rubinstein J.L., Fleet D.J., Brubaker M.A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14(3):290–296.

16. Zhong F., Zhong Z.Y., Liang S., Li X.J. High expression level of soluble SARS spike protein mediated by adenovirus in HEK293 cells. World J. Gastroenterol. 2006;12(9):1452.

17. Cai Y., Zhang J., Xiao T., Peng H., Sterling S.M., Walsh Jr R.M., Rawson S., Rits-Volloch S., Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369(6511):1586–1592.

18. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. CryoEM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263.

19. Choi Y.K., Cao Y., Frank M., Woo H., Park S.J., Yeom M.S., Croll T.I., Seok C., Im W. Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. J. Chem. Theory Comput. 2021;17(4):2479–2487.

20. Pramanick I., Sengupta N., Mishra S., Pandey S., Girish N., Das A., Dutta S. Conformational flexibility and structural variability of SARS-CoV2 S protein. Structure. 2021;29(8):834–845.

21. Yao H., Song Y., Chen Y., Wu N., Xu J., Sun C., Zhang J., Weng T., Zhang Z., Wu Z., Cheng L. Molecular architecture of the SARS-CoV-2 virus. Cell. 2020;183(3):730–738.

22. Song Y., Yao H., Wu N., Xu J., Zhang Z., Peng C., Li S., Kong W., Chen Y., Zhu M., Wang J. In situ architecture and membrane fusion of SARS-CoV-2 Delta variant. Proc. Natl. Acad. Sci. U.S.A. 2023;120(18):e2213332120.


Review

For citations:


Mamaeva N.Yu., Derkacheva N.I., Gasanova D.A., Sokolova O.S., Glukhov G.S. Stabilization of full-length S-protein of SARS-Cov-2 coronavirus in SMA polymer for electron microscopy study. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3S):27-32. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3S-5

Views: 109


ISSN 0137-0952 (Print)