Cryo-electron microscopy at the Faculty of Biology of Lomonosov Moscow State University
https://doi.org/10.55959/MSU0137-0952-16-78-3S-9
Abstract
This paper demonstrates an example of a successful upgrade of a JEOL JEM-2100 analytical transmission electron microscope to a low-resolution cryo-electron microscope designed for routine tasks of sample preparation and quality evaluation. As a result of the upgrade, the instrument allows the subnanometer resolution of protein molecule reconstructions (within 8 Å). The influence of graphene and amorphous carbon support films to prevent the effect of preferred orientation of protein particles in the frozen sample is discussed.
Keywords
About the Authors
A. V. MoiseenkoRussian Federation
Electron Microscopy Laboratory, Faculty of Biology
1–32 Leninskie Gory, 119234, Moscow
A. M. Egorov
Russian Federation
Department of Chemical Enzymology, Faculty of Chemistry
1–11 Leninskie Gory, 119234, Moscow
K. V. Shaitan
Russian Federation
Faculty of Biology
1–73 Leninskie Gory, 119234, Moscow
O. S. Sokolova
Russian Federation
Faculty of Biology
1–73 Leninskie Gory, 119234, Moscow
References
1. Nakane T., Kotecha A., Sente A., et al. Singleparticle cryo-EM at atomic resolution. Nature. 2020;587(7832):152–156.
2. Yip K.M., Fischer N., Paknia E., Chari A., Stark H. Atomic-resolution protein structure determination by cryoEM. Nature. 2020;587(7832):157–161.
3. Number of Released PDB Structures per Year [Electronic resource]. 2023. URL: https://www.rcsb.org/stats/all-released-structures (accessed: 05.07.2023).
4. Cressey D., Callaway E. Cryo-electron microscopy wins chemistry Nobel. Nature. 2017;550(7675):167.
5. Glaeser R.M., Nogales E., Chiu W. Single-particle cryo-EM of biological macromolecules. IOP Publishing; 2021. 120 pp.
6. Dubochet J., Adrian M., Chang J.J., Homo J.C., Lepault J., McDowall A.W., Schultz P. Cryo-electron microscopy of vitrified specimens. Quart. Rev. Biophys. 1988;21(2):129–228.
7. Frederik P.M., Busing W.M. Cryo-transfer revised. J. Microsc. 1986;144(2):215–221.
8. McMullan G., Faruqi A.R., Henderson R. Chapter one – Direct electron detectors. Methods in Enzymology, vol. 579. Ed. R.A. Crowther. Elsevier; 2016:1–17.
9. Glaeser R.M. Retrospective: Radiation damage and its associated “Information Limitations.” J. Struct. Biol. 2008;163(3):271–276.
10. Glaeser R.M. Specimen behavior in the electron beam. Methods in Enzymology, vol. 579. Ed. R.A. Crowther. Elsevier; 2016:19–50.
11. Campbell M.G., Cheng A., Brilot A.F., Moeller A., Lyumkis D., Veesler D., Pan J., Harrison S.C., Potter C.S., Carragher B., Grigorieff N. Movies of ice-embedded particles enhance resolution in electron cryo-microscopy. Structure. 2012;20(11):1823–1828.
12. Cheng A., Tan Y.Z., Dandey V.P., Potter C.S., Carragher B. Strategies for automated CryoEM data collection using direct detectors. Methods in Enzymology, vol. 579. Ed. R.A. Crowther. Elsevier; 2016:87–102.
13. Koh A., Khavnekar S., Yang W., Karia D., Cats D., Van Der Ploeg R., Grollios F., Raschdorf O., Kotecha A., Němeček D. Routine collection of high-resolution cryo-EM datasets using 200 KV transmission electron microscope. J. Vis. Exp. 2022;(181):e63519.
14. Passmore L.A., Russo C.J. Specimen preparation for high-resolution Cryo-EM. Methods in Enzymology, vol. 579. Elsevier; 2016:51–86.
15. Mastronarde D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152(1):36–51.
16. Palovcak E., Wang F., Zheng S.Q., Yu Z., Li S., Betegon M., Bulkley D., Agard D.A., Cheng Y. A simple and robust procedure for preparing graphene-oxide cryoEM grids. J. Struct. Biol. 2018;204(1):80–84.
17. Nazarov S. Structure of viral membranepenetrating machines by electron cryo-microscopy and tomography. 2015; URL: http://infoscience.epfl.ch/record/206115 (accessed: 04.07.2023).
18. Moiseenko A.V., Bagrov D.V., Vorovitch M.F., Uvarova V.I., Veselov M.M., Kashchenko A.V., Ivanova A.L., Osolodkin D.I., Egorov A.M., Ishmukhametov A.A., Shaitan K.V., Sokolova O.S. Size distribution of inactivated tick-borne encephalitis virus particles revealed by a comprehensive physicochemical approach. Biomedicines. 2022;10(10):2478.
19. Füzik T., Formanová P., Růžek D., Yoshii K., Niedrig M., Plevka P. Structure of tick-borne encephalitis virus and its neutralization by a monoclonal antibody. Nat Commun. 2018;9(1):436.
20. Vasudevan D., Chua E.Y.D., Davey C.A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J. Mol. Biol. 2010;403(1):1–10.
21. Qayyum M.Z., Molodtsov V., Renda A., Murakami K.S. Structural basis of RNA polymerase recycling by the Swi2/Snf2 family of ATPase RapA in Escherichia coli. J. Biol. Chem. 2021;297(6):101404.
22. Glaeser R.M., Han B.G. Opinion: hazards faced by macromolecules when confined to thin aqueous films. Biophys. Rep. 2017;3(1–3):1–7.
Review
For citations:
Moiseenko A.V., Egorov A.M., Shaitan K.V., Sokolova O.S. Cryo-electron microscopy at the Faculty of Biology of Lomonosov Moscow State University. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3S):51-56. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3S-9