Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Rheological behavior of polysaccharide hydrogels of alginate reinforced by small amount of halloysite nanotubes for extrusion 3D printing

https://doi.org/10.55959/MSU0137-0952-16-78-3S-11

Abstract

The rheological properties of hydrogels of a natural polysaccharide sodium alginate and small amount of clay nanotubes of halloysite were investigated. Changes of rheological properties during the transition from a semi-dilute polymer solution to a hydrogel upon cross-linking by calcium ions were shown. In the gel state, the samples have a yield stress, and their viscosity decreases with the shear rate, but the properties are quickly recovered after the load removal. It was obtained that the addition of up to 0.3 vol.% nanotubes of natural clay halloysite leads to an increase by several times of a storage modulus and an yield stress of the hydrogels. At the same time, the practically important properties of shear thinning and the rapid recovery of properties after the load removing make the nanocomposite hydrogels of alginate and halloysite nanotubes promising for use as ink for extrusion 3D printing.

About the Authors

V. S. Molchanov
Lomonosov Moscow State University
Russian Federation

Department of Polymers and Crystals Physics, Faculty of Physics

1–2 Leninskie Gory, 119991, Moscow



S. A. Glukhov
Lomonosov Moscow State University
Russian Federation

Department of Polymers and Crystals Physics, Faculty of Physics

1–2 Leninskie Gory, 119991, Moscow



O. E. Philippova
Lomonosov Moscow State University
Russian Federation

Department of Polymers and Crystals Physics, Faculty of Physics

1–2 Leninskie Gory, 119991, Moscow



References

1. Liu J., Sun L., Xu W., Wang Q., Yu S., Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr. Polym. 2019;207:297–316.

2. Mobaraki M., Ghaffari M., Yazdanpanah A., Luo Y., Mills D.K. Bioinks and bioprinting: A focused review. Bioprinting. 2020;18:e00080.

3. Valentine A.D., Busbee T.A., Boley J.W., Raney J.R., Chortos A., Kotikian A., Berrigan J.D., Durstock M.F., Lewis J.A. Hybrid 3D printing of soft electronics. Adv. Mater. 2017;29(40):1703817.

4. Arzhakova O.V., Arzhakov M.S., Badamshina E.R., et al. Polymers for the future. Russ. Chem. Rev. 2022;91(12):RCR5062.

5. Li H., Tan C., Li L. Review of 3D printable hydrogels and constructs. Mater. Des. 2018;159:20–38.

6. Truby R.L., Lewis J.A. Printing soft matter in three dimensions. Nature. 2016;540(7633):371–378.

7. Heinrich M.A., Liu W., Jimenez A., Yang J., Akpek A., Liu X., Pi Q., Mu X., Hu N., Schiffelers R.M., Prakash J., Xie J., Zhang Y.S. 3D bioprinting: from benches to translational applications. Small. 2019;15(23): 1805510.

8. Stanton M.M., Samitier J., Sánchez S. Bioprinting of 3D hydrogels. Lab Chip. 2015;15(15):3111–3115.

9. Rastogi P., Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):42001.

10. Diañez I., Gallegos C., Brito-de la Fuente E., Martínez I., Valencia C., Sánchez MC., Diaz M.J., Franco J.M. 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocoll. 2019;87:321–330.

11. Hu C., Du Z., Tai X., Mao X., Liu X. The property study of sodium dodecyl benzenesulfonate and polyvinylpyrrolidone complexes. Colloid Polym. Sci. 2018;335–340.

12. Axpe E., Oyen M.L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 2016;17(12):1976.

13. Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014;32(8):773–785.

14. Dávila J.L., d’Ávila M.A. Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing. Int. J. Adv. Manuf. Technol. 2019;101(1–4):675–686.

15. Peak C.W., Stein J., Gold K.A., Gaharwar A.K. Nanoengineered colloidal inks for 3D bioprinting. Langmuir. 2018;34(3):917–925.

16. Liu L., Wan Y., Xie Y., Zhai R., Zhang B., Liu J. The removal of dye from aqueous solution using alginatehalloysite nanotube beads. Chem. Eng. J. 2012;187:210–216.

17. Del Buffa S., Rinaldi E., Carretti E., Ridi F., Bonini M., Baglioni P. Injectable composites via functionalization of 1D nanoclays and biodegradable coupling with a polysaccharide hydrogel. Colloids Surf. B Biointerfaces. 2016;145:562–526.

18. Li H., Liu S., Li L. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int. J. Bioprinting. 2016;2(2):58–66.

19. Glukhova S.A., Molchanov V.S., Lokshin B.V., Rogachev A.V., Tsarenko A.A., Patsaev T.D., Kamyshinsky R.A., Philippova O.E. Printable alginate hydrogels with embedded network of halloysite nanotubes: Effect of polymer cross-linking on rheological properties and microstructure. Polymers. 2021;13(23):4130.

20. Glukhova S.A., Molchanov V.S., Chesnokov Y.M., Lokshin B.V., Kharitonova E.P., Philippova O.E. Green nanocomposite gels based on binary network of sodium alginate and percolating halloysite clay nanotubes for 3D printing. Carbohydr. Polym. 2022;282:119106.

21. Stokke B.T., Draget K.I., Smidsrod O., Yuguchi Y., Urakawa H., Kajiwara K. Small-angle X-ray scattering and rheological characterization of alginate gels. 3. Alginic acid gels. Macromolecules. 2000;33(5):1853–1863.

22. Cavallaro G., Chiappisi L., Pasbakhsh P., Gradzielski M., Lazzara G. A structural comparison of halloysite nanotubes of different origin by small-angle neutron scattering (SANS) and electric birefringence. Appl. Clay Sci. 2018;160:71–80.

23. Hernández R., Sacristán J., Mijangos C. Sol/gel transition of aqueous alginate solutions induced by Fe2+ cations. Macromol. Chem. Phys. 2010;211(11):1254–1260.

24. Li H., Liu S., Li L. Rheological study on 3D printability of alginate hydrogel and effect of graphene oxide. Int. J. Bioprinting. 2016;2(2):54–66.

25. Hashemnejad S.M., Kundu S. Rheological properties and failure of alginate hydrogels with ionic and covalent crosslinks. Soft Matter. 2019;15(39):7852–7862.

26. Molchanov V.S., Efremova M.A., Kiseleva T.Y., Philippova O.E. Injectable ultra-soft hydrogel with natural nanoclay. Nanosyst.: Phys. Chem. Math. 2019;10(1):76–85.

27. Shishkhanova K.B., Molchanov V.S., Baranov A.N., Kharitonova E.P., Orekhov A.S., Arkharova N.A., Philippova O.E. A pH-triggered reinforcement of transient network of wormlike micelles by halloysite nanotubes of different charge. J. Mol. Liq. 2023;370:121032.


Review

For citations:


Molchanov V.S., Glukhov S.A., Philippova O.E. Rheological behavior of polysaccharide hydrogels of alginate reinforced by small amount of halloysite nanotubes for extrusion 3D printing. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3S):63-68. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3S-11

Views: 94


ISSN 0137-0952 (Print)