Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

The role of immune response components of the first and seventeenth types in the development of allergic diseases of the respiratory system

https://doi.org/10.55959/MSU0137-0952-16-79-4-11

Abstract

In the classical view of the mechanisms of development of allergic inflammation, the leading role is given to Th2 cells and their cytokines. Currently, this concept is being rethought, since in some cases, influencing the components of the second type of immune response does not eliminate allergic symptoms. At the same time, experimental evidence has been obtained of the involvement of Th1 and Th17 lymphocyte populations in the development of allergic diseases of the respiratory tract, such as bronchial asthma and allergic rhinitis. Components of the type 1 immune response, in particular IFN-γ, promote both anti-inflammatory and pro-inflammatory processes, regulating the severity of the immune response of the respiratory tract to the action of the allergen. The net effect is likely to be to inhibit its progression by suppressing the type 2 immune response. Components of the type 17 immune response activate a wide range of effector cells that support inflammation. Cytokines of the IL-17 family (IL-17A and IL-17F) stimulate the synthesis of proinflammatory cytokines and chemokines in airway epithelial cells, which recruit and activate neutrophils. It is assumed that similar mechanisms determine the involvement of Th17 in the development of allergic airway inflammation.

About the Authors

T. V. Mironova
Department of Biochemistry, Belarusian State Medical University, Ministry of Health of the Republic of Belarus
Belarus

Dzerzhinski Ave., 83, Minsk, 220083 



A. D. Tahanovich
Department of Biochemistry, Belarusian State Medical University, Ministry of Health of the Republic of Belarus
Belarus

Dzerzhinski Ave., 83, Minsk, 220083 



A. G. Каdushkin
Department of Biochemistry, Belarusian State Medical University, Ministry of Health of the Republic of Belarus
Belarus

Dzerzhinski Ave., 83, Minsk, 220083 



V. V. Маkarevich
Department of Biochemistry, Belarusian State Medical University, Ministry of Health of the Republic of Belarus
Belarus

Dzerzhinski Ave., 83, Minsk, 220083 



I. P. Shilovskiy
National Research Center – Institute of Immunology, Federal Medical-Biological Agency
Russian Federation

Kashirskoe shosse, 24, Moscow, 115522 



M. R. Khaitov
National Research Center – Institute of Immunology, Federal Medical-Biological Agency
Russian Federation

Kashirskoe shosse, 24, Moscow, 115522 



References

1. Знаменская Л.К., Шадчнева Н.А., Паневская Г.Н. Динамика заболеваемости аллергическим ринитом у взрослого населения Республики Крым в период с 2011 по 2015 гг. Таврический медико-биологический вестник. 2017;3(3):75–79.

2. Рязанцев С.В., Павлова С.С. Отражение современных концепций терапии при лечении аллергических заболеваний носа и околоносовых пазух. Медицинский совет. 2020;(6):78–84.

3. Азизова К.Ш., Абдурахманова Н.Р., Курбанов А.Г., Малакаева З.А., Давдиева А.А., Исмаилова Б.Н., Мирзаханов С.М., Мирзаханов А.М. Исследование коморбидности бронхиальной астмы и аллергического ринита у детей. Международный научно-исследовательский журнал. 2023;1(127):1–4.

4. Chen X., Yue R., Li X., Ye W., Gu W., Guo X. Surfactant protein A modulates the activities of the JAK/ STAT pathway in suppressing Th1 and Th17 polarization in murine OVA-induced allergic asthma. Lab. Invest. 2021;101(9):1176–1185.

5. Лобанова Е.Г., Калинина Е.П., Денисенко Ю.К. Особенности содержания цитокинов Тh1- и Тh17- лимфоцитов у лиц с хронической обструктивной болезнью легких. Медицинская иммунология. 2016;18(3):287–290.

6. Drazdauskaitė G., Layhadi J.A., Shamji M.H. Mechanisms of allergen immunotherapy in allergic rhinitis. Curr. Allergy Asthma Rep. 2021;21:2.

7. Steelant B., Wawrzyniak P., Martens K., Jonckheere A.C., Pugin B., Schrijvers R., Bullens D.M., Vanoirbeek J.A., Krawczyk K., Dreher A., Akdis C.A., Hellings P.W., Blocking histone deacetylase activity as a novel target for epithelial barrier defects in patients with allergic rhinitis. J. Allergy Clin. Immunol. 2019;144(5):1242–1253.

8. Akasaki S., Matsushita K., Kato Y., Fukuoka A., Iwasaki N., Nakahira M., Fujieda S., Yasuda K., Yoshimoto T. Murine allergic rhinitis and nasal Th2 activation are mediated via TSLP- and IL-33-signaling pathways. Int. Immunol. 2016;28(2):65–76.

9. Новик Г.А., Тамразова О.Б. Практический подход к лечению аллергических заболеваний. Аллергология и иммунология в педиатрии. 2023;(3):5–15.

10. Chen F., He D., Yan B. Apigenin attenuates allergic responses of ovalbumin-induced allergic rhinitis through modulation of Th1/Th2 responses in experimental mice. Dose-Response. 2020;18(1):1559325820904799.

11. Saadat S., Mohamadian Roshan N., Aslani M.R., Boskabady M.H. Rosuvastatin suppresses cytokine production and lung inflammation in asthmatic, hyperlipidemic and asthmatic-hyperlipidemic rat models. Cytokine. 2020;128:154993.

12. Tao B., Ruan G., Wang D., Li Y., Wang Z., Yin G. Imbalance of peripheral Th17 and regulatory T cells in children with allergic rhinitis and bronchial asthma. Iran J. Allergy Asthma Immunol. 2015;14(3):273–279.

13. Berghi N.O., Dumitru M., Vrinceanu D., Ciuluvica R.C., Simioniuc-Petrescu A., Caragheorgheopol R., Tucureanu C., Cornateanu R. S., Giurcaneanu C. Relationship between chemokines and T lymphocytes in the context of respiratory allergies (Review). Exp. Ther. Med. 2020;20(3):2352–2360.

14. Ke X., Chen Z., Wang X., Kang H., Hong S. Quercetin improves the imbalance of Th1/Th2 cells and Treg/Th17 cells to attenuate allergic rhinitis. Autoimmunity. 2023;56(1):2189133.

15. Просекова Е.В., Долгополов М.С., Сабыныч В.А. Полиморфизм генов, спонтанная и индуцированная продукция клетками периферической крови интерлейкина 4 и интерферона гамма при бронхиальной астме у детей. РМЖ. Медицинское обозрение. 2020;4(1):10–14.

16. Volpe E., Pattarini L., Martinez-Cingolani C., et al. Thymic stromal lymphopoietin links keratinocytes and dendritic cell–derived IL-23 in patients with psoriasis. J. Allergy Clin. Immunol. 2014;134(2):373–381.

17. Berker M., Frank L.J., Geßner A.L., Grassl N., Holtermann A.V., Höppner S., Kraef C., Leclaire M.D., Maier P., Messerer D.A.C., Möhrmann L., Nieke J.P., Schoch D., Soll D., Woopen C.M.P. Allergies – A T cells perspective in the era beyond the TH1/TH2 paradigm. Clin. Immunol. 2017;174:73–83.

18. Ding F.M., Liao R.M., Chen Y.Q., Xie G.G., Zhang P.Y., Shao P., Zhang M. Upregulation of SOCS3 in lung CD4+ T cells in a mouse model of chronic PA lung infection and suppression of Th17mediated neutrophil recruitment in exogenous SOCS3 transfer in vitro. Mol. Med. Rep. 2017;16(1):778–786.

19. Просекова Е.В., Турянская А.И., Долгополов М.С. Семейство интерлейкина-17 при атопии и аллергических заболеваниях. Тихоокеанский медицинский журнал. 2018;(2(72)):15–20.

20. Min H.J., Kim K.S. IL-17C expression and its correlation with pediatric adenoids: a preliminary study. Int. J. Med. Sci. 2020;17(17):2603–2610.

21. Cauli A., Piga M., Floris A., Mathieu A. Current perspective on the role of the interleukin-23/interleukin-17 axis in inflammation and disease (chronic arthritis and psoriasis). Immunotargets Ther. 2015;4:185–190.

22. Rahmawati S.F., Vos R., Bos I.S.T., Kerstjens H.A.M., Kistemaker L.E.M., Gosens R. Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells. Sci. Rep. 2022;12(1):11110.

23. Willis C.R., Siegel L., Leith A., Mohn D., Escobar S., Wannberg S., Misura K., Rickel E., Rottman J.B., Comeau M.R., Sullivan J.K., Metz D.P., Tocker J., Budelsky A.L. IL-17RA signaling in airway inflammation and bronchial hyperreactivity in allergic asthma. Am. J. Respir. Cell Mol. Biol. 2015;53(6):810–821.

24. Menson K.E., Mank M.M., Reed L.F., Van Der Vliet K.E., Ather J.L., Chapman D.G., Smith B.J., Rincon M., Poynter M.E. Therapeutic efficacy of IL-17A neutralization with corticosteroid treatment in a model of antigen-driven mixed-granulocytic asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2020;319(4):L693–L709.

25. Порошина А.С., Шершакова Н.Н., Шиловский И.П., Кадушкин А.Г., Таганович А.Д., Гудима Г.О., Хаитов М.Р. Роль ИЛ-25, ИЛ-33 и TSLP в развитии кортикостероидной резистентности. Иммунология. 2023;44(4):500–510.

26. Khantakova J.N., Mutovina A., Ayriyants K.A., Bondar N.P. Th17 cells, glucocorticoid resistance, and depression. Cells. 2023;12(23):2749.

27. Sawant K.V., Poluri K.M., Dutta A.K., Sepuru K.M., Troshkina A., Garofalo R.P., Rajarathnam K. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sci. Rep. 2016;6:33123.

28. Yang T., Li Y., Lyu Z., Huang K., Corrigan C. J., Ying S., Wang W., Wang, C. Characteristics of proinflammatory cytokines and chemokines in airways of asthmatics: relationships with disease severity and infiltration of inflammatory cells Chin. Med. J. 2017;130(17):2033–2040.

29. Симбирцев А.С. Цитокины в иммунопатогенезе аллергии. РМЖ. Медицинское обозрение. 2021;5(1):32–37.

30. Schiffer M., Peters K., Peters M. Comparison of airway remodeling in two different endotypes of allergic asthma. Int. Arch. Allergy Immunol. 2022;183(7):714–725.

31. Nadeem A., Ahmad S.F., Al-Harbi N.O., Ibrahim K.E., Siddiqui N., Al-Harbi M.M., Attia S.M., Bakheet S.A. Inhibition of Bruton’s tyrosine kinase and IL-2 inducible T-cell kinase suppresses both neutrophilic and eosinophilic airway inflammation in a cockroach allergen extract-induced mixed granulocytic mouse model of asthma using preventative and therapeutic strategy. Pharmacol. Res. 2019;148:104441.

32. Sorbello V., Ciprandi G., Di Stefano A., Massaglia G.M., Favatà G., Conticello S., Malerba M., Folkerts G., Profita M., Rolla G., Ricciardolo F.L. Nasal IL-17F is related to bronchial IL-17F/neutrophilia and exacerbations in stable atopic severe asthma. Allergy. 2015;70(2):236–240.

33. Song J., Zhang H., Tong Y., Wang Y., Xiang Q., Dai H., Weng C., Wang L., Fan J., Shuai Y., Lai C., Fang X., Chen M., Bao J., Zhang W. Molecular mechanism of interleukin-17A regulating airway epithelial cell ferroptosis based on allergic asthma airway inflammation. Redox Biol. 2023;68:102970.

34. Quan S.H., Zhang Y.L., Han D.H., Iwakura Y., Rhee C.S. Contribution of interleukin 17A to the development and regulation of allergic inflammation in a murine allergic rhinitis model. Ann. Allergy Asthma Immunol. 2012;108(5):342–350.

35. Xu B., Liu X., Gao S. IL2-inducible T-cell kinase inhibitor ibrutinib reduces symptoms and Th2 differentiation in mouse allergic-rhinitis model. Drug. Dev. Res. 2022;83(2):544–551.

36. Chenuet P., Fauconnier L., Madouri F., Marchiol T., Rouxel N., Ledru A., Mauny P., Lory R., Uttenhove C., Snick J., Iwakura Y., Padova F., Quesniaux V., Togbe D., Ryffel B. Neutralization of either IL-17A or IL-17F is sufficient to inhibit house dust mite induced allergic asthma in mice. Clin. Sci. (Lond.). 2017;131(20):2533–2548.

37. Lee M.F., Song P.P., Hwang G.Y., Lin S.J., Chen Y.H. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann. Allerg. Asthma Immunol. 2012;108(4):243–248.

38. Wang Х., Zhang N., Bo M., Holtappels G., Zheng M., Lou H., Wang H., Zhang L., Bachert C. Diversity of Th cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016;138(5):1344–1353.


Review

For citations:


Mironova T.V., Tahanovich A.D., Каdushkin A.G., Маkarevich V.V., Shilovskiy I.P., Khaitov M.R. The role of immune response components of the first and seventeenth types in the development of allergic diseases of the respiratory system. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):280-286. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-11

Views: 114


ISSN 0137-0952 (Print)