Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

Взаимодействующие гены PARG1 и EXA1 являются важными регуляторами аутоиммунитета у растений

https://doi.org/10.55959/MSU0137-0952-16-79-4-8

Аннотация

Исследования выполнены на растениях двойного мутанта резуховидки (Arabidopsis thaliana) parg1 exa1, характеризующегося смертью клеток по краю листовой пластинки, активацией экспрессии генов иммунных рецепторов, генов PR-белков и генов гиперчувствительного ответа, что является признаком аутоиммунитета. В то же время, в отличие от других мутантов c проявлением аутоиммунитета, мутант parg1 exa1 демонстрировал приобретение клетками листа плюрипотентности и способность к регенерации нового края листа. В связи с необычным фенотипом в данной работе проведен углубленный анализ транскриптома молодых листьев мутанта и растений дикого типа. У мутанта обнаружено повышение уровня экспрессии всех основных компонентов иммунного ответа, включая гены Са2+-проводящих каналов, НАДФН-оксидаз, генов синтеза салициловой кислоты, жасмоновой кислоты и многие другие. Полученные данные свидетельствуют о том, что гены PARG1 и EXA1, контролирующие уровень поли(АДФ-рибозилирования) и процесс нонсенс-опосредованной деградации РНК соответственно, являются важными регуляторами иммунного ответа. Их функция необходима для предотвращения чрезмерной активации защитных систем в растениях.

Об авторах

Е. В. Куприянова
Кафедра генетики, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

Куприянова Евгения Владимировна – канд. биол. наук, ст. науч. сотр. кафедры 

119234, г. Москва, Ленинские горы, д. 1, стр. 12, Тел.: 8-495-939-54-90



К. А. Манахова
Центр генетики и наук о жизни, Научно-технологический университет Сириус
Россия

Манахова Карина Айратовна – науч. сотр. (направление «Генетика») научного центра 

354340, Краснодарский край, пгт Сириус, Тел.: 8-800-100-41-55



Т. А. Ежова
Кафедра генетики, биологический факультет, Московский государственный университет имени М.В. Ломоносова
Россия

Ежова Татьяна Анатольевна – докт. биол. наук, проф. кафедры 

119234, г. Москва, Ленинские горы, д. 1, стр. 12, Тел.: 8-495-939-54-90 



Список литературы

1. Böhm H., Albert I., Fan L., Reinhard A., Nürnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 2014;20:47–54.

2. de Azevedo E., Manhães A.M., Ortiz-Morea F.A., He P., Shan L. Plant plasma membrane-resident receptors: Surveillance for infections and coordination for growth and development. J. Integr. Plant Biol. 2021;63(1):79–101.

3. Maruta N., Burdett H., Lim B.Y.J., Hu X., Desa S., Manik M.K., Kobe B. Structural basis of NLR activation and innate immune signalling in plants. Immunogenetics. 2022;74(1):5–26.

4. Lüdke D., Yan Q., Rohmann P.F., Wiermer M. NLR we there yet? Nucleocytoplasmic coordination of NLR-mediated immunity. New Phytol. 2022;236(1):24–42.

5. Zhang B., Liu M., Wang Y., Yuan W., Zhang H. Plant NLRs: Evolving with pathogen effectors and engineerable to improve resistance. Front. Microbiol. 2022;13:1018504.

6. Marcec M.J., Gilroy S., Poovaiah B.W., Tanaka K. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci. 2019;283:343–354.

7. Xu G., Moeder W., Yoshioka K., Shan L. A tale of many families: calcium channels in plant immunity. Plant Cell. 2022;34(5):1551–1567.

8. Köster P., DeFalco T.A., Zipfel C. Ca2+ signals in plant immunity. EMBO J. 2022;41(12):e110741.

9. Bi G., Su M., Li N., Liang Y., Dang S., Xu J., Hu M., Wang J., Zou M., Deng Y., Li Q., Huang S., Li J., Chai J., He K., Chen Y.H., Zhou J.M. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184(13):3528–3541.

10. Jacob P., Kim N.H., Wu F., El-Kasmi F., Chi Y., Walton W.G., Furzer O.J., Lietzan A.D., Sunil S., Kempthorn K., Redinbo M.R., Pei Z.M., Wan L., Dangl J.L. Plant “helper” immune receptors are Ca2+- permeable nonselective cation channels. Science. 2021;373(6553):420–425.

11. Allan C., Morris R.J., Meisrimler C.N. Encoding, transmission, decoding, and specificity of calcium signals in plants. J. Exp. Bot. 2022;73(11):3372–3385.

12. Galon Y., Finkler A., Fromm H. Calcium-regulated transcription in plants. Mol. Plant. 2010;3(4):653–669.

13. Ren H., Zhang Y., Zhong M., Hussian J., Tang Y., Liu S., Qi G. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. Theor. Appl. Genet. 2023;136(10):210.

14. Kimura S., Hunter K., Vaahtera L., Tran H.C., Citterico M., Vaattovaara A., Rokka A., Stolze S.C., Harzen A., Meißner L., Wilkens M.M.T., Hamann T., Toyota M., Nakagami H., Wrzaczek M. CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in Arabidopsis. Plant Cell. 2020;32(4):1063–1080.

15. Bourdais G., Burdiak P., Gauthier A., Nitsch L., Salojärvi J., Rayapuram C., Idänheimo N., Hunter K., Kimura S., Merilo E., Vaattovaara A., Oracz K., Kaufholdt D., Pallon A., Anggoro D.T. et.al. Large-scale phenomics identifies primary and fine-tuning Roles for CRKs in responses related to oxidative stress. PLoS Genet. 2015;11(7):e1005373.

16. Rentel M.C., Lecourieux D., Ouaked F., Usher S.L., Petersen L., Okamoto H., Knight H., Peck S.C., Grierson C.S., Hirt H., Knight M.R. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature. 2004;427(6977):858–861.

17. Dietz K.J. Redox regulation of transcription factors in plant stress acclimation and development. Antioxid. Redox. Signal. 2014;21(9):1356–1372.

18. He H., Breusegem F., Mhamdi A. Redoxdependent control of nuclear transcription in plants. J. Exp. Bot. 2018;69(14):3359–3372.

19. Мацкевич В.С., Самохина В.В., Гриусевич П.В., Войтехович М.А., Соколик А.И., Демидчик В.В. Са2+- проницаемые катионные каналы плазматической мембраны клеток высших растений. Журнал Белорусского государственного университета. Биология. 2018;2:11–26.

20. Sun T., Zhang Y., Li Y., Zhang Q., Ding Y., Zhang Y. ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nat. Commun. 2015;6(1):1.

21. Cui H., Gobbato E., Kracher B., Qiu J., Bautor J., Parker J.E. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. New Phytol. 2017;213(4):1802–1817.

22. Rekhter D., Lüdke D., Ding Y., Feussner K., Zienkiewicz K., Lipka V., Wiermer M., Zhang Y., Feussner I. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science. 2019;365(6452):498–502.

23. Wang Z., Liu X., Yu J., Yin S., Cai W., Kim N.H., El Kasmi F., Dangl J.L., Wan L. Plasma membrane association and resistosome formation of plant helper immune receptors. Proc. Natl. Acad. Sci. U.S.A. 2023;120(32):e2222036120.

24. Saleem M., Fariduddin Q., Castroverde C.D.M. Salicylic acid: A key regulator of redox signalling and plant immunity. Plant Physiol. Biochem. 2021;168:381–397.

25. Zhang N., Zhou S., Yang D., Fan Z. Revealing shared and distinct genes responding to JA and SA signaling in Arabidopsis by meta-analysis. Front. Plant Sci. 2020;11:908.

26. Zhou J.M., Zhang Y. Plant immunity: danger perception and signaling. Cell. 2020;181(5):978–989.

27. Balakireva A.V., Zamyatnin A.A. Cutting out the gaps between proteases and programmed cell death. Front. Plant Sci. 2019;10:704.

28. Kovács J., Poór P., Szepesi Á., Tari I. Salicylic acid induced cysteine protease activity during programmed cell death in tomato plants. Acta Biol. Hung. 2016;67(2):148–158.

29. Robert-Seilaniantz A., Grant M., Jones J.D. Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 2011;49:317–343.

30. Zhang Y., Li X. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 2019;50:29–36.

31. Yang J., Duan G., Li C., Liu L., Han G., Zhang Y., Wang, C. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front. Plant Sci. 2019;10:1349.

32. Chakraborty J., Ghosh P., Das S. Autoimmunity in plants. Planta. 2018;248(4):751–767.

33. Freh M., Gao J., Petersen M., Panstruga R. Plant autoimmunity-fresh insights into an old phenomenon. Plant Physiol. 2022;188(3):1419–1434.

34. Kupriyanova E., Manakhov A., Ezhova T. PARG1 and EXA1 genes as possible components of the facultative epigenetic control of plant development. Physiol. Plant. 2023;175(4):e13959.

35. Kupriyanova E.V., Denisova E.R., Baier M.A., Ezhova T.A. Differences in the manifestation of cell pluripotence in vivo and in vitro in the mutant Arabidopsis thaliana with the phenotype of cell memory disorder. Russ. J. Plant Physiol. 2021;68(1):46–55.

36. Adams-Phillips L., Briggs A.G., Bent A.F. Disruption of poly(ADP-ribosyl)ation mechanisms alters responses of Arabidopsis to biotic stress. Plant Physiol. 2010;152(1):267–280.

37. Feng B., Liu C., de Oliveira M.V., Intorne A.C., Li B., Babilonia K., de Souza Filho G.A., Shan L., He P. Protein poly(ADP-ribosyl)ation regulates Arabidopsis immune gene expression and defense responses. PLoS Genet. 2015;11:e1004936.

38. Li G., Nasar V., Yang Y., Li W., Liu B., Sun L., Li D., Song F. Arabidopsis poly(ADP-ribose) glycohydrolase 1 is required for drought, osmotic and oxidative stress responses. Plant Sci. 2011;180(2):283–291.

39. Zhang H., Gu Z., Wu Q., Yang L., Liu C., Ma H., Xia Y., Ge X. Arabidopsis PARG1 is the key factor promoting cell survival among the enzymes regulating post-translational poly(ADP-ribosyl)ation. Sci. Rep. 2015;5:15892.

40. Matsui H., Nomura Y., Egusa M., Hamada T., Hyon G.S., Kaminaka H., Watanabe Y., Ueda T., Trujillo M., Shirasu K., Nakagami H. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genet. 2017;13:e1007037.

41. Wu Z., Huang S., Zhang X., Wu D., Xia S., Li X. Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. eLife. 2017;6:e23684.

42. Tian T., Liu Y., Yan H., You Q., Yi X., Du Z., Xu W., Su Z. agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122–W129.

43. Sun Y., Qiao Z., Muchero W., Chen J.G. Lectin receptor-like kinases: the sensor and mediator at the plant cell surface. Front. Plant Sci. 2020;11:596301.

44. Liu L., Liu J., Xu N. Ligand recognition and signal transduction by lectin receptor-like kinases in plant immunity. Front. Plant Sci. 2023;14:1201805.

45. Verica J.A., He Z.H. The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol. 2002;129(2):455–459.

46. Zhang Z., Huo W., Wang X., Ren Z., Zhao J., Liu Y., He K., Zhang F., Li W., Jin S., Yang D. Origin, evolution, and diversification of the wall-associated kinase gene family in plants. Plant Cell Rep. 2023;42(12):1891–1906.

47. Yamaguchi Y., Huffaker A., Bryan A.C., Tax F.E., Ryan C.A. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell. 2010;22(2):508–522.

48. Invernizzi M., Hanemian M., Keller J., Libourel C., Roby D. PERKing up our understanding of the proline-rich extensin-like receptor kinases, a forgotten plant receptor kinase family. New Phytol. 2022;235(3):875–884.

49. Martín-Dacal M., Fernández-Calvo P., Jimé- nez-Sandoval P., López G., Garrido-Arandía M., Rebaque D., Del Hierro I., Berlanga D.J., Torres M.Á., Kumar V., Mélida H., Pacios L.F., Santiago J., Molina A. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases. Plant J. 2023;113(4):833–850.

50. Wan J., Tanaka K., Zhang X.C., Son G.H., Brechenmacher L., Nguyen T.H., Stacey G. LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 2012;160(1):396–406.

51. Stokes K.D., Gururaj Rao A. Dimerization properties of the transmembrane domains of Arabidopsis CRINKLY4 receptor-like kinase and homologs. Arch. Biochem. Biophys. 2008;477(2):219–226.

52. Ortiz-Morea F.A., Liu J., Shan L., He P. Malectinlike receptor kinases as protector deities in plant immunity. Nat. Plants. 2022;8(1):27–37.

53. Hernandez-Coronado M., Araujo P.C.D., Ip P.L., Nunes C.O., Rahni R., Wudick M.M., Lizzio M.A., Feijo J.A., Birnbaum K.D. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense. Dev. Cell. 2022;57(4):451–465.

54. Acevedo-Garcia J., Kusch S., Panstruga R. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol. 2014;204(2):273–281.

55. Wu X., Wang Y., Bian Y., Ren Y., Xu X., Zhou F., Ding H. A critical review on plant annexin: Structure, function, and mechanism. Plant Physiol. Biochem. 2022;190:81–89.

56. Wang C., Luan S. Calcium homeostasis and signaling in plant immunity. Curr. Opin. Plant Biol. 2024;77:102485.

57. Saile S.C., El Kasmi F. Small family, big impact: RNL helper NLRs and their importance in plant innate immunity. PLoS Pathog. 2023;19(4):e1011315.

58. Membré N., Bernier F., Staiger D., Berna A. Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta. 2000;211(3):345–354.

59. Rawat A.A., Hartmann M., Harzen A., Lugan R., Stolze S.C., Forzani C., Abts L., Reißenweber S., Rayapuram N., Nakagami H., Zeier J., Hirt H. OXIDATIVE SIGNAL-INDUCIBLE1 induces immunity by coordinating N-hydroxypipecolic acid, salicylic acid, and camalexin synthesis. New Phytol. 2023;237(4):1285–1301.

60. Lefevere H., Bauters L., Gheysen G. Salicylic acid biosynthesis in plants. Front. Plant Sci. 2020;11: 338.

61. Yoo S.J., Choi H.J., Noh S.W., Cecchini N.M., Greenberg J.T., Jung H.W. Genetic requirements for infection-specific responses in conferring disease resistance in Arabidopsis. Front. Plant Sci. 2022;13:1068438.

62. Wild M., Achard P. The DELLA protein RGL3 positively contributes to jasmonate/ethylene defense responses. Plant Signal. Behav. 2013;8(4):e23891.

63. Hunter L.J., Westwood J.H., Heath G., Macaulay K., Smith A.G., Macfarlane S.A., Palukaitis P., Carr J.P. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis. PloS One. 2013;8(6):e66530.

64. Bernacki M.J., Rusaczonek A., Czarnocka W., Karpiński S. Salicylic acid accumulation controlled by LSD1 is essential in triggering cell death in response to abiotic stress. Cells. 2021;10(4):962.

65. Neubauer M., Serrano I., Rodibaugh N., Bhandari D.D., Bautor J., Parker J.E., Innes R.W. Arabidopsis EDR1 protein kinase regulates the association of EDS1 and PAD4 to inhibit cell death. Mol. Plant Microbe Interact. 2020;33(4):693–703.

66. Zhang K., Halitschke R., Yin C., Liu C.J., Gan S.S. Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc. Natl. Acad. Sci. U.S.A. 2013;110(36):14807–14812.

67. Zhang Y.J., Zhao L., Zhao J.Z., Li Y.J., Wang J.B., Guo R., Gan S.S., Liu C.J., Zhanga K.W. S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homoeostasis. Plant Physiol. 2017;175(3):1082–1093.

68. Zhang B., Van Aken O., Thatcher L., De Clercq I., Duncan O., Law S.R., Murcha M.W., van der Merwe M., Seifi H.S., Carrie C., Cazzonelli C., Radomiljac J., Höfte M., Singh K.B., Van Breusegem F., Whelan J. The mitochondrial outer membrane AAA ATPase AtOM66 affects cell death and pathogen resistance in Arabidopsis thaliana. Plant J. 2014;80(4):709–727.

69. Holmes D.R., Bredow M., Thor K., Pascetta S.A., Sementchoukova I., Siegel K.R., Zipfel C., Monaghan J. A novel allele of the Arabidopsis thaliana MACPF protein CAD1 results in deregulated immune signaling. Genetics. 2021;217:iyab022.

70. Lv S., Yang Y., Yu G., Peng L., Zheng S., Singh S.K., Vílchez J.I., Kaushal R., Zi H., Yi D., Wang Y., Luo S., Wu X., Zuo Z., Huang W., Liu R., Du J., Macho A.P., Tang K., Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. ISME J. 2022;16(11):2513–2524.

71. Lu Y., Truman W., Liu X., Bethke G., Zhou M., Myers C.L., Katagiri F., Glazebrook J. Different modes of negative regulation of plant immunity by calmodulin-related genes. Plant Physiol. 2018;176(4):3046–3061.

72. Briggs A.G., Adams-Phillips L.C., Keppler B.D., Zebell S.G., Arend K.C., Apfelbaum A.A., Smith J.A., Bent A.F. A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS One. 2017;12:e0190268.

73. Hashimoto M., Neriya Y., Keima T., Iwabuchi N., Koinuma H., Hagiwara-Komoda Y., Ishikawa K., Himeno M., Maejima K., Yamaji Y., Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. Plant J. 2016;88(1):120–131.


Рецензия

Для цитирования:


Куприянова Е.В., Манахова К.А., Ежова Т.А. Взаимодействующие гены PARG1 и EXA1 являются важными регуляторами аутоиммунитета у растений. Вестник Московского университета. Серия 16. Биология. 2024;79(4):287-297. https://doi.org/10.55959/MSU0137-0952-16-79-4-8

For citation:


Kupriyanova E.V., Manakhova K.A., Ezhova T.A. PARG1 and EXA1 interacting genes are important regulators of autoimmunity in plants. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2024;79(4):287-297. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-79-4-8

Просмотров: 86


ISSN 0137-0952 (Print)