Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Changes in the regulation of cerebral vasoactive reactions and aging: the contribution of H2S to cGMP-induced dilation

https://doi.org/10.55959/MSU0137-0952-16-80-2-3

Abstract

Signal cascade NO → soluble guanylate cyclase (sGC) → сyclic guanosine monophosphate (cGMP) → protein kinase G (PKG) plays a significant role in vascular dilation. Its disorders can cause the development of cerebrovascular diseases. The key unit in the NO → PKG signaling system is cGMP. Intracellular cGMP levels are largely regulated by cGMP-hydrolyzing phosphodiesterase (PDE) enzymes that break down cGMP. Aging is accompanied by a decrease in NO synthesis and cGMP levels and an increase in PDE activity. Under these conditions, it is possible to increase the contribution of compensatory mechanisms of activation of individual sections of the NO → PKG signaling pathway, in particular with the participation of intermediaries that change the cGMP level. Hydrogen sulfide (H2S) is currently considered as one of the activators of the NO → PKG pathway, which can increase cGMP levels in cells by inhibiting PDE or its direct interaction with cGMP to form biologically active compounds that are less susceptible to enzymatic break down. H2S-mediated cGMP activation has been shown in cardiomyocytes and smooth muscle cells of mesenteric and aortic vessels, but this mechanism has not been studied in cerebral vessels. The aim of the work was to study the contribution of H2S to the regulation of cGMP-induced vasodilation of cerebral vessels and changes in this mechanism of regulation of vasoactive reactions during aging. In Sprague-Dawley 4 (young) and 18-month-old (aging) rats, a comparative study of the pial arteries dilatation to the effect of the penetrating into cells analog cGMP – 8-Br-cGMP was performed using intravital microphotography, and an assessment of the effect of exogenous (donor – NaHS) and endogenous H2S on the cGMP-induced vasodilation. Propargylglycine was used as a blocker of endogenous H2S. It was shown that in 4-month-old rats, the H2S-mediated regulation of cGMP-induced dilation of the pial arteries was expressed only at the level of large arteries with a diameter of more than 40 microns. Aging leads to an increased contribution of endogenous H2S to cGMP-induced dilation of the pial arteries of all calibers and an increased sensitivity of cGMP-mediated reactions of small pial arteries to exogenous H2S.

About the Authors

O. P. Gorshkova
Pavlov Institute of Physiology, Russian Academy of Science
Russian Federation

 Makarov emb., 6, St. Petersburg, 199034



V. N. Shuvaeva
Pavlov Institute of Physiology, Russian Academy of Science
Russian Federation

 Makarov emb., 6, St. Petersburg, 199034



References

1. Mazuryk O., Gurgul I., Oszajca M., Polaczek J., Kieca K., Bieszczad-Żak E., Martyka T., Stochel G. Nitric Oxide signaling and sensing in age-related diseases. Antioxidants (Basel). 2024;13(10):1213.

2. Cai Z., Wu C., Xu Y., Cai J., Zhao M., Zu L. The NO-cGMP-PKG axis in HFpEF: From pathological mecha nisms to potential therapies. Aging Dis. 2023;14(1):46–62.

3. Feil R., Lohmann S.M., de Jonge H., Walter U., Hofmann F. Cyclic GMP-dependent protein kinases and the cardiovascular system: Insights from genetically modified mice. Circ. Res. 2003;93(10):907–916.

4. Lehners M., Dobrowinski H., Feil S., Feil R. cGMP signaling and vascular smooth muscle cell plasticity. J. Cardiovasc. Dev. Dis. 2018;5(2):20.

5. Kraehling J.R., Sessa W.C. Contemporary approaches to modulating the nitric oxide-cGMP pathway in cardiovascular disease. Circ. Res. 2017;120(7):1174–1182.

6. Grześk G., Witczyńska A., Węglarz M., Wołowiec Ł., Nowaczyk J., Grześk E., Nowaczyk A. Soluble guanylyl cyclase activators-promising therapeutic option in the pharmacotherapy of heart failure and pulmonary. Hypertension. Molecules. 2023;28(2):861.

7. Munteanu C., Popescu C., Vlădulescu-Trandafir A.I., Onose G. Signaling paradigms of H2S-induced vasodilation: A comprehensive review. Antioxidants (Basel). 2024;13(10):1158.

8. Szabo C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am. J. Physiol. Cell Physiol. 2017;312(1):C3–C15.

9. Nalli A.D., Bhattacharya S., Wang H., Kendig D.M., Grider J.R., Murthy K.S. Augmentation of cGMP/PKG pathway and colonic motility by hydrogen sulfide. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;313(4):G330–G341.

10. Fu Q., Wang Y., Yan C., Xiang Y.K. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol. Rev. 2024;104(2):765–834.

11. Schlossmann J., Schinner E. cGMP becomes a drug target. Naunyn Schmiedebergs Arch. Pharmacol. 2012;385(3):243–252.

12. Lee H.J., Feliers D., Mariappan M.M., Sataranatarajan K., Choudhury G.G., Gorin Y., Kasinath B.S. Tadalafil integrates nitric oxide-hydrogen sulfide signaling to inhibit high glucose-induced matrix protein synthesis in podocytes. J. Biol. Chem. 2015;290(19):12014–12026.

13. Pourbagher-Shahri A.M., Farkhondeh T., Talebi M., Kopustinskiene D.M., Samarghandian S., Bernatoniene J. An overview of NO signaling pathways in aging. Molecules. 2021;26(15):4533.

14. Willkie S.E., Borland G., Carter R.N., Morton N.M., Selman C. Hydrogen sulfide in ageing, longevity and disease. Biochem. J. 2021;478(19):3485–3504.

15. Cesarini V., Guida E., Campolo F., Crescioli C., Di Baldassarre A., Pisano C., Balistreri C.R., Ruvolo G., Jannini E.A., Dolci S. Type 5 phosphodiesterase (PDE5) and the vascular tree: From embryogenesis to aging and disease. Mech. Ageing Dev. 2020;190:111–311.

16. Calabrese V., Scuto M., Salinaro A.T., Dionisio G., Modafferi S., Ontario M.L., Greco V., Sciuto S., Schmitt C.P., Calabrese E.J., Peters V. Hydrogen sulfide and carnosine: modulation of oxidative stress and inflammation in kidney and brain axis. Antioxidants (Basel). 2020;9(12):1303.

17. Hine C., Zhu Y., Hollenberg A.N., Mitchell J.R. Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid. Redox Signal. 2018;28(16):1483–1502.

18. Predmore B.L., Alendy M.J., Ahmed K.I., Leeuwenburgh C., Julian D. The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr.). 2010;32(4):467–481.

19. Gorshkova O.P. The contribution of BK channels to ischemic/reperfusion changes in cerebral blood flow. J. Evol. Biochem. Physiol. 2024;60(Suppl. 1):S125–S134.

20. Shuvaeva V.N., Gorshkova O.P. Role of BKCa channels in pial-vessel dilation in rats of different ages. Adv. Gerontol. 2023;13(4);188–195.

21. Koeppen M., Feil R., Siegl D., Feil S., Hofmann F., Pohl U., de Wit C. cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension. 2004;44(6):952–955.

22. Bucci M., Papapetropoulos A., Vellecco V., Zhou Z., Zaid A., Giannogonas P., Cantalupo A., Dhayade S., Karalis K.P., Wang R., Feil R., Cirino G. cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS One. 2012;7(12):e53319.

23. Chen S., Guo F., Liu X., Xi J., Xue M., Guo Y., Wen J., Dong L., Chen Z. Roles of the RhoA-ROCK signaling pathway in the endothelial H2S production and vasodilation in rat cerebral arteries. ACS Omega. 2022;7(22):18498–18508.

24. Van der Linden J., Trap L., Scherer C.V., Roks A.J.M., Danser A.H.J., van der Pluijm I., Cheng C. Model systems to study the mechanism of vascular aging. Int. J. Mol. Sci. 2023;24(20):15379.

25. Горшкова О.П. Особенности механизмов NO-опосредованной дилатации пиальных артерий на воздействие ацетилхолина у стареющих крыс. Интегративная физиология. 2022;3(3):367–377.

26. Wang J., Peng X., Lassance-Soares R.M., Najafi A.H., Alderman L.O., Sood S., Xue Z., Chan R., Fa ber J.E., Epstein S.E., Burnett M.S. Aging-induced colla teral dysfunction: impaired responsiveness of collaterals and susceptibility to apoptosis via dysfunctional eNOS signaling. J. Cardiovasc. Transl. Res. 2011;4(6):779–789.

27. Бонь Л.И., Максимович Н.Е. Морфологические представления о кровообращении головного мозга крысы. Вестник Витебского государственного медицинского университета. 2018;17(2):30–36.

28. Привалова И.Л., Горпинич А.Б., Озерова И.Ю., Глотова И.В., Богданова Е.И. Анализ функциональной значимости изменений ионного состава плазмы крови в экспериментальных исследованиях с использованием крыс в качестве биологических тест-систем. Современные проблемы науки и образования. 2018;(4):195.


Review

For citations:


Gorshkova O.P., Shuvaeva V.N. Changes in the regulation of cerebral vasoactive reactions and aging: the contribution of H2S to cGMP-induced dilation. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(2):89-95. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-2-3

Views: 8


ISSN 0137-0952 (Print)