Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Overcoming the “resolution gap”: combination of super-resolution microscopy and cryo-electron tomography for mitochondria-vimentin binding sites identification

https://doi.org/10.55959/MSU0137-0952-16-80-3S-2

Abstract

Progress in fundamental research is directly related to the emergence of new research methods that not only expand the established classical concepts, but can provide information that fundamentally changes them. According to our data, vimentin filaments, binding to mitochondria, determine their distribution and mobility in cells, affect the level of their membrane potential, there is a region responsible for the interaction of vimentin filaments with mitochondria in the N-terminal part of the vimentin molecule and similar amino acid sequences are found in other proteins, for example, in desmin. Since direct interaction of vimentin filaments with microtubules and actin filaments has already been shown, these facts together allowed us to assume that the connection of individual cytoskeleton components with each other and with mitochondria is not limited to interaction through cross-linker and motor proteins. Vimentin (and possibly other intermediate filament proteins) can regulate cytoskeletal interactions with mitochondria. A revolutionary study performed using cryo-electron tomography and fundamentally changing our understanding of the three-dimensional structure of vimentin filaments motivated us to use the capabilities of the cryo-electron microscopy method to try to identify the binding sites of vimentin with other cytoskeletal components and mitochondria. To meet this challenge is fundamentally possible if we combine super-resolution microscopy and cryo-electron tomography, which will bridge the existing “resolution gap” and solve associated problems.

About the Authors

I. B. Alieva
A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University; Institute of Protein Research, Russian Academy of Sciences
Russian Federation

1–40 Leninskie gory, 119992, Moscow

4 Institutskaya Str., Pushchino, Serpukhov, Moscow Region, 142290



A. S. Shakhov
A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University; Institute of Protein Research, Russian Academy of Sciences
Russian Federation

1–40 Leninskie gory, 119992, Moscow

4 Institutskaya Str., Pushchino, Serpukhov, Moscow Region, 142290



A. S. Churkina
A.N. Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University; Institute of Protein Research, Russian Academy of Sciences
Russian Federation

1–40 Leninskie gory, 119992, Moscow

4 Institutskaya Str., Pushchino, Serpukhov, Moscow Region, 142290



A. A. Minin
Institute of Protein Research, Russian Academy of Sciences
Russian Federation

4 Institutskaya Str., Pushchino, Serpukhov, Moscow Region, 142290



References

1. Nekrasova O.E., Mendez M.G., Chernoivanenko I.S., Tyurin-Kuzmin P.A., Kuczmarski E.R., Gelfand V.I., Goldman R.D., Minin A.A. Vimentin intermediate filaments modulate the motility of mitochondria. Mol. Biol. Cell. 2011;22(13):2282–2289.

2. Chernoivanenko I.S., Matveeva E.A., Gelfand V.I., Goldman R.D., Minin A.A. Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB J. 2015;29(3):820–827.

3. Schaedel L, Lorenz C, Schepers AV, Klumpp S, Köster S. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nat. Commun. 2021;12(1):3799.

4. Esue O., Carson A.A., Tseng Y., Wirtz D. A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin. J. Biol. Chem. 2006;281(41):30393–30399.

5. Alieva I.B., Shakhov A.S., Dayal A.A., Churkina A.S., Parfenteva O.I., Minin A.A. Unique role of vimentin in the intermediate filament proteins family. Biochemistry (Mosc.). 2024;89(4):726–736.

6. Eibauer M., Weber M.S., Kronenberg-Tenga R., Beales C.T., Boujemaa-Paterski R., Turgay Y., Sivagurunathan S., Kraxner J., Köster S., Goldman R.D., Medalia O. Vimentin filaments integrate low-complexity domains in a complex helical structure. Nat. Struct. Mol. Biol. 2024;31(6):939–949.

7. Flemming W. Studien in der entwicklungsgeschichte der najaden. Sitzungsber. Akad. Wissensch. Wien. 1875;71:81–147.

8. Hertwig O. Beitrage zur kenntnis der bildung, befruchtung und theilung des thierischen eies. Morphol. Jb. 1875;1:347–434.

9. Van Beneden E. Recherches sur les Dicyemides, survivants actuels d’un embranchement des Mésozoaires. Bull. Acad. Roy. Méd. Belg. 1876;41:1160–1205.

10. Cheng J., Syder A.J., Yu Q.C., Letal A., Paller A.S., Fuchs E. The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes. Cell. 1992;70(5):811–819.

11. Chipev C.C., Korge B.P., Markova N., Bale S.J., Di- Giovanna J.J., Compton J.G., Steinert P.M. A leucine→proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. 1992;70(5):821–828.

12. Côté F., Collard J.F., Julien J.P. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Cell. 1993;73(1):35–46.

13. Di Somma S., De Divitiis O., Marotta M., Salvatore G., Cudemo G., Cuda G., De Vivo F., Di Benedetto M.P., Ciaramella F., Caputo G., de Divitiis O. Changes in myocardial cytoskeletal intermediate filaments and myocyte contractile dysfunction in dilated cardiomyopathy: An in vivo study in humans. Heart. 2000;84(6):659–667.

14. Battaglia R.A., Delic S., Herrmann H., Snider N.T. Vimentin on the move: new developments in cell migration. F1000Research. 2018;7:1796.

15. Müller M., Bhattacharya S.S., Moore T., Prescott Q., Wedig T., Herrmann H., Magin T.M. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum. Mol. Genet. 2009;18(6):1052–1057.

16. Kim S.Y., Cho W., Kim I., Lee S.H., Oh G.T., Park Y.M. Oxidized LDL induces vimentin secretion by macrophages and contributes to atherosclerotic inflammation. J. Mol. Med. 2020;98(7):973–983.

17. Zeisberg M., Neilson E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 2009;119(6):1429–1437.

18. Eckes B., Dogic D., Colucci-Guyon E., Wang N., Maniotis A., Ingber D., Merckling A., Langa F., Aumailley M., Delouvée A., Koteliansky V., Babinet C., Krieg T. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J. Cell Sci. 1998;111(Pt. 13):1897–1907.

19. Kulik A.V., Gioeva F.K., Minin A.A. Videomicroscopic studies of the movement of mitochondria. Russ. J. Dev. Biol. 2002;33(5):299–305.

20. Некрасова О.Е., Минин А.А., Кулик А.В., Минин А.А. Регуляция фибронектином формы и внутри- клеточного распределения митохондрий. Биол. мембр. 2005;22(2):58–65.

21. Кулик А.В., Некрасова О.Е., Минин А.А. Фибриллярный актин регулирует подвижность митохондрий. Биол. мембр. 2006;23(1):33–42.

22. Minin A.A., Kulik A.V., Gyoeva F.K., Li Y., Goshima G., Gelfand V.I. Regulation of mitochondria distribution by RhoA and formins. J. Cell Sci. 2006;119(Pt. 4):659–670.

23. Некрасова О.Е., Кулик А.В., Минин А.А. Протеинкиназа С регулирует подвижность митохондрий. Биол. мембр. 2007;24(2):126–131.

24. Morris R.L., Hollenbeck P.J. The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth. J. Cell Sci. 1993;104(Pt. 3):917–927.

25. Chada S.R., Hollenbeck P.J. Mitochondrial movement and positioning in axons: the role of growth factor signaling. J. Exp. Biol. 2003;206(Pt. 12):1985–1992.

26. Dayal A.A., Medvedeva N.V., Minin A.A. N-terminal fragment of vimentin is responsible for binding of mitochondria in vitro. Biochemistry (Mosc.), Suppl. Ser. A: Membr. Cell Biol. 2022;16(2):151–157.

27. Dayal A.A., Medvedeva N.V., Nekrasova T.M., Duhalin S.D., Surin A.K., Minin A.A. Desmin interacts directly with mitochondria. Int. J. Mol. Sci. 2020;21(21):8122.

28. Tokuyasu K.T. A technique for ultracryotomy of cell suspensions and tissues. J. Cell Biol. 1973;57(2):551–565.

29. Robinson J.M., Takizawa T., Pombo A., Cook P.R. Correlative fluorescence and electron microscopy on ultrathin cryosections: bridging the resolution gap. J. Histochem. Cytochem. 2001;49(7):803–808.

30. Takizawa T., Suzuki K., Robinson J.M. Correlative microscopy using FluoroNanogold on ultrathin cryosections. Proof of principle. J. Histochem. Cytochem. 1998;46(10):1097–1102.

31. Pombo A., Hollinshead M., Cook P.R. Bridging the resolution gap: Imaging the same transcription factories in cryosections by light and electron microscopy. J. Histochem. Cytochem. 1999;47(4):471–480.

32. Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–1645.

33. Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods. 2006;3(10):793–795.

34. Kaufmann R., Schellenberger P., Seiradake E., Dobbie I.M., Jones E.Y., Davis I., Hagen C., Grünewald K. Super-resolution microscopy using standard fluorescent proteins in intact cells under cryo-conditions. Nano Lett. 2014;14(7):4171–4175.

35. Liu B., Xue Y., Zhao W., Chen Y., Fan C., Gu L., Zhang Y., Zhang X., Sun L., Huang X., Ding W., Sun F., Ji W., Xu T. Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci. Rep. 2015;5:13017.

36. Hoffman D.P., Shtengel G., Xu C.S., et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science. 367(6475):eaaz5357.

37. van den Dries K., Fransen J., Cambi A. Fluorescence CLEM in biology: historic developments and current super-resolution applications. FEBS Lett. 2022;596(19):2486–2496.


Review

For citations:


Alieva I.B., Shakhov A.S., Churkina A.S., Minin A.A. Overcoming the “resolution gap”: combination of super-resolution microscopy and cryo-electron tomography for mitochondria-vimentin binding sites identification. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3S):15-22. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-2

Views: 90


ISSN 0137-0952 (Print)