Морфология эритроцитов указывает на различие механизмов формирования внеклеточных везикул эритроцитарного происхождения
https://doi.org/10.55959/MSU0137-0952-16-80-3S-4
Аннотация
Внеклеточные везикулы эритроцитарного происхождения (ЭВ) являются перспективным средством «адресной доставки лекарств», в связи с чем целью работы стало сравнение ряда методов получения ЭВ из эритроцитов in vitro. С помощью сканирующей электронной микроскопии установлено, что при ряде воздействий (кальциевый ионофор A23187, додецилсульфат натрия, лизофосфатидная кислота и инкубация при 50°C) эритроциты отщепляют ЭВ. Различие в морфологии эритроцитов, подвергнутых воздействиям, стимулирующим выделение ЭВ, указывает на различие механизмов формирования ЭВ. Методом спектроскопии комбинационного рассеяния показано, что ЭВ, полученные методом термической обработки, могут содержать гемоглобин, в то время как при воздействии додецилсульфата натрия образуются везикулы без гемоглобина. Полученные данные позволят целенаправленно выбирать метод получения ЭВ в соответствии с требованиями к их составу.
Ключевые слова
Об авторах
Е. Ю. ПаршинаРоссия
Паршина Евгения Юрьевна – канд. биол. наук, ст. науч. сотр. кафедры биофизики биологического факультета
119234, г. Москва, Ленинские горы, д. 1, стр. 24
Тел.: 8-495-939-19-66
Л. С. Фролова
Канада
Фролова Любовь Сергеевна – аспирант химического факультета
3247 Research Road, Kelowna, BC V1V 1V7
Тел.: 8-495-939-19-66
Г. В. Максимов
Россия
Максимов Георгий Владимирович – докт. биол. наук, проф. кафедры биофизики биологического факультета
119234, г. Москва, Ленинские горы, д. 1, стр. 24
Тел.: 8-495-939-19-66
Список литературы
1. Shahjin F., Chand S., Yelamanchili S.V. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J. Neuroimmune Pharmacol. 2020;15(3):443–458.
2. Matsumoto J., Stewart T., Sheng L., Li N., Bullock K., Song N., Shi M., Banks W.A., Zhang J. Transmission of α-synuclein- containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol. Commun. 2017;5(1):71.
3. You Y., Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis. 2019;130:104512.
4. Kim O.Y., Lee J., Gho Y.S. Extracellular vesicle mimetics: Novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Semin. Cell Dev. Biol. 2017;67:74–82.
5. Lai R.C., Yeo R.W.Y., Tan K.H., Lim S.K. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol. Adv. 2013;31(5):543–551.
6. Usman W.M., Pham T.C., Kwok Y.Y., Vu L.T., Ma V., Peng B., Chan Y.S., Wei L., Chin S.M., Azad A., He A.B.-L., Leung A.Y.H., Yang M., Shyh-Chang N., Cho W.C., Shi J., Le M.T.N. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018;9(1):2359.
7. Tissot J.-D., Canellini G., Rubin O., Angelillo-Scherrer A., Delobel J., Prudent M., Lion N. Blood microvesicles: From proteomics to physiology. Transl. Proteomics. 2013;1(1):38–52.
8. Jank H., Salzer U. Vesicles generated during storage of red blood cells enhance the generation of radical oxygen speciesin activated neutrophils. Sci. World J. 2011;11(1):173–185.
9. Kuo W.P., Jia S, editors. Extracellular Vesicles: Methods and Protocols. N.Y.: Springer New York; 2017. doi:10.1007/978-1-4939-7253-1
10. Harisa G.I., Badran M.M., Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach. Saudi Pharm. J. 2017;25(1):8–17.
11. Lang E., Qadri S.M., Lang F. Killing me softly – Suicidal erythrocyte death. Int. J. Biochem. Cell. Biol. 2012;44(8):1236–1243.
12. Lang F., Gulbins E., Lang P.A., Zappulla D., Föller M. Ceramide in suicidal death of erythrocytes. Cell. Physiol. Biochem. 2010;26(1):21–28.
13. Föller M., Kasinathan R.S., Koka S., Lang C., Shumilina E., Birnbaumer L., Lang F., Huber S.M. TRPC6 contributes to the Ca2+ leak of human erythrocytes. Cell. Physiol. Biochem. 2008;21(1–3):183–192.
14. Daleke D.L. Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr. Opin. Hematol. 2008;15(3):191–195.
15. Nguyen D.B., Wagner-Britz L., Maia S., Steffen P., Wagner C., Kaestner L., Bernhardt I. Regulation of phosphatidylserine exposure in red blood cells. Cell. Physiol. Biochem. 2011;28(5):847–856.
16. Kalra H., Adda C.G., Liem M., Ang C., Mechler A., Simpson R.J., Hulett M.D., Mathivanan S. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354–3364.
17. Sheetz M.P., Painter R.G., Singer S.J. Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J. Cell Biol. 1976;70(1):193–203.
18. Pant H.C., Virmani M., Gallant P.E. Calciuminduced proteolysis of spectrin and band 3 protein in rat erythrocyte membranes. Biochem. Biophys. Res. Commun. 1983;117(2):372–377.
19. Ak G., Hamarat Şanlıer Ş. Erythrocyte membrane vesicles coated biomimetic and targeted doxorubicin nanocarrier: Development, characterization and in vitro studies. J. Mol. Struct. 2020;1205:127664.
20. AlQahtani S.A., Harisa G.I., Badran M.M., Al- Ghamdi K.M., Kumar A., Salem-Bekhit M.M., Ahmad S.F., Alanazi F.K. Nano-erythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif. Cells Nanomedicine Biotechnol. 2019;47(1):989–996.
21. Hu C-M.J., Zhang L., Aryal S., Cheung C., Fang R.H., Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 2011;108(27):10980–10985.
22. Malhotra S., Dumoga S., Sirohi P., Singh N. Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl. Mater. Interfaces. 2019;11(25):22141–22151.
23. Chang M., Hsiao J.-K., Yao M., Chien L.-Y., Hsu S.-C., Ko B.-S., Chen S.-T., Liu H.-M., Chen Y.-C., Yan C.-S., Huang, D.-M. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. Nanotechnology. 2010;21(23):235103.
24. Wang L.-Y., Shi X.-Y., Yang C.-S., Huang D.-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale. 2013;5(1):416–421.
25. Hägerstrand H., Isomaa B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta BBA–Biomembr. 1992;1109(2):117–126.
26. Chung S.-M., Bae O.-N., Lim K.-M., Noh J.-Y., Lee M.-Y., Jung Y.-S., Chung J.-H. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler. Thromb. Vasc. Biol. 2007;27(2):414–421.
27. Vodyanoy V. Thermodynamic evaluation of vesicles shed by erythrocytes at elevated temperatures. Colloids Surf. B Biointerfaces. 2015;133:231–238.
28. Allan D., Billah M.M., Finean J.B., Michell R.H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular [Ca2+]. Nature. 1976;261(5555):58–60.
29. Pompeo G., Girasole M., Cricenti A., Boumis G., Bellelli A., Amiconi S. Erythrocyte death in vitro induced by starvation in the absence of Ca2+. Biochim. Biophys. Acta BBA–Biomembr. 2010;1798(6):1047–1055.
30. Allan D., Thomas P., Limbrick AR. The isolation and characterization of 60 nm vesicles (‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes. Biochem. J. 1980;188(3):881–887.
31. Shukla S.D., Berriman J., Coleman R., Finean J.B., Michell R.H. Membrane protein segregation during release of microvesicles from human erythrocytes. FEBS Lett. 1978;90(2):289–292.
32. Bütikofer P., Brodbeck U., Ott P. Modulation of erythrocyte vesiculation by amphiphilic drugs. Biochim. Biophys. Acta BBA–Biomembr. 1987;901(2):291–295.
33. Chernitsky E.A., Senkovich O.A., Rozin V.V. Dependence of erythrocyte vesiculation and hemolysis parameters on the concentration of sodium dodecyl sulfate. Vesicular-competitive hemolysis. Membr. Cell Biol. 2001;14(5):629–636.
34. Senkovich O.A., Chernitsky E.A. On the size of pores arising in erythrocytes under the action of detergents. Membr. Cell Biol. 1998;11(5):679–689. 35. Shalel S., Streichman S., Marmur A. The mechanism of hemolysis by surfactants: effect of solution composition. J. Colloid Interface Sci. 2002;252(1):66–76.
35. Moolenaar W.H., Van Meeteren L.A., Giepmans B.N.G. The ins and outs of lysophosphatidic acid signaling. BioEssays. 2004;26(8):870–881.
36. Baar S. Mechanisms of delayed red cell destruction after thermal injury. An experimental in vitro SEM study. Br. J. Exp. Pathol. 1974;55(2):187–193.
37. Baar S., Arrowsmith D.J. Thermal damage to red cells. J. Clin. Pathol. 1970;23(7):572–576.
38. Christel S., Little C. Morphological changes during heating of erythrocytes from stored human blood. J. Therm. Biol. 1984;9(3):221–228.
39. Kozlova E., Chernysh A., Sergunova V., Manchenko E., Moroz V., Kozlov A. Conformational distortions of the red blood cell spectrin matrix nanostructure in response to temperature changes in vitro. Scanning. 2019;2019:8218912.
40. Parshina E.Yu., Yusipovich A.I., Platonova A.A., Grygorczyk R., Maksimov G.V., Orlov S.N. Thermal inactivation of volume-sensitive K+,Cl− cotransport and plasma membrane relief changes in human erythrocytes. Pflüg. Arch.–Eur. J. Physiol. 2013;465(7):977–983.
41. Bosman G.J.C.G.M., Lasonder E., Groenen- Döpp Y.A.M., Willekens F.L.A., Werre J.M. The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation. J. Proteomics. 2012;76:203–210.
42. Thangaraju K., Neerukonda S.N., Katneni U., Buehler P.W. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int. J. Mol. Sci. 2020;22(1):153.
43. Huisjes R., Bogdanova A., Van Solinge W.W., Schiffelers R.M., Kaestner L., Van Wijk R. Squeezing for life – properties of red blood cell deformability. Front. Physiol. 2018;9:656.
44. Kitahama Y., Ozaki Y. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems. The Analyst. 2016;141(17):5020–5036.
45. Wood B.R., Caspers P., Puppels G.J., Pandiancherri S., McNaughton D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 2007;387(5):1691–1703.
Рецензия
Для цитирования:
Паршина Е.Ю., Фролова Л.С., Максимов Г.В. Морфология эритроцитов указывает на различие механизмов формирования внеклеточных везикул эритроцитарного происхождения. Вестник Московского университета. Серия 16. Биология. 2025;80(3):23-30. https://doi.org/10.55959/MSU0137-0952-16-80-3S-4
For citation:
Parshina E.Yu., Frolova L.S., Maximov G.V. The morphology of erythrocytes reveals differences in the mechanisms of erythrocyte derived extracellular vesicle formation. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):23-30. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-4


























