The morphology of erythrocytes reveals differences in the mechanisms of erythrocyte derived extracellular vesicle formation
https://doi.org/10.55959/MSU0137-0952-16-80-3S-4
Abstract
Erythrocyte-derived extracellular vesicles (EDEVs) are a promising tool for “targeted drug delivery,” and this study aimed to compare several methods of obtaining EDEVs from erythrocytes in vitro. Scanning electron microscopy revealed that under certain treatments (calcium ionophore A23187, SDS, LPA, and incubation at 50°C), erythrocytes shed EDEVs. The differences in the morphology of erythrocytes subjected to EDEVs-stimulating treatments suggest distinct mechanisms of EDEVs formation. Raman spectroscopy showed that EDEVs obtained by heat treatment may contain hemoglobin, while SDS-induced treatment produces hemoglobin-free vesicles. The data obtained will allow for a targeted selection of EDEVs production methods based on their required composition.
About the Authors
E. Yu. ParshinaRussian Federation
1–24 Leninskie Gory, Moscow, 119234
L. S. Frolova
Canada
3247 Research Road, Kelowna, BC V1V 1V7
G. V. Maximov
Russian Federation
1–24 Leninskie Gory, Moscow, 119234
References
1. Shahjin F., Chand S., Yelamanchili S.V. Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System. J. Neuroimmune Pharmacol. 2020;15(3):443–458.
2. Matsumoto J., Stewart T., Sheng L., Li N., Bullock K., Song N., Shi M., Banks W.A., Zhang J. Transmission of α-synuclein- containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson’s disease? Acta Neuropathol. Commun. 2017;5(1):71.
3. You Y., Ikezu T. Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol. Dis. 2019;130:104512.
4. Kim O.Y., Lee J., Gho Y.S. Extracellular vesicle mimetics: Novel alternatives to extracellular vesicle-based theranostics, drug delivery, and vaccines. Semin. Cell Dev. Biol. 2017;67:74–82.
5. Lai R.C., Yeo R.W.Y., Tan K.H., Lim S.K. Exosomes for drug delivery – a novel application for the mesenchymal stem cell. Biotechnol. Adv. 2013;31(5):543–551.
6. Usman W.M., Pham T.C., Kwok Y.Y., Vu L.T., Ma V., Peng B., Chan Y.S., Wei L., Chin S.M., Azad A., He A.B.-L., Leung A.Y.H., Yang M., Shyh-Chang N., Cho W.C., Shi J., Le M.T.N. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nat. Commun. 2018;9(1):2359.
7. Tissot J.-D., Canellini G., Rubin O., Angelillo-Scherrer A., Delobel J., Prudent M., Lion N. Blood microvesicles: From proteomics to physiology. Transl. Proteomics. 2013;1(1):38–52.
8. Jank H., Salzer U. Vesicles generated during storage of red blood cells enhance the generation of radical oxygen speciesin activated neutrophils. Sci. World J. 2011;11(1):173–185.
9. Kuo W.P., Jia S, editors. Extracellular Vesicles: Methods and Protocols. N.Y.: Springer New York; 2017. doi:10.1007/978-1-4939-7253-1
10. Harisa G.I., Badran M.M., Alanazi FK. Erythrocyte nanovesicles: Biogenesis, biological roles and therapeutic approach. Saudi Pharm. J. 2017;25(1):8–17.
11. Lang E., Qadri S.M., Lang F. Killing me softly – Suicidal erythrocyte death. Int. J. Biochem. Cell. Biol. 2012;44(8):1236–1243.
12. Lang F., Gulbins E., Lang P.A., Zappulla D., Föller M. Ceramide in suicidal death of erythrocytes. Cell. Physiol. Biochem. 2010;26(1):21–28.
13. Föller M., Kasinathan R.S., Koka S., Lang C., Shumilina E., Birnbaumer L., Lang F., Huber S.M. TRPC6 contributes to the Ca2+ leak of human erythrocytes. Cell. Physiol. Biochem. 2008;21(1–3):183–192.
14. Daleke D.L. Regulation of phospholipid asymmetry in the erythrocyte membrane. Curr. Opin. Hematol. 2008;15(3):191–195.
15. Nguyen D.B., Wagner-Britz L., Maia S., Steffen P., Wagner C., Kaestner L., Bernhardt I. Regulation of phosphatidylserine exposure in red blood cells. Cell. Physiol. Biochem. 2011;28(5):847–856.
16. Kalra H., Adda C.G., Liem M., Ang C., Mechler A., Simpson R.J., Hulett M.D., Mathivanan S. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics. 2013;13(22):3354–3364.
17. Sheetz M.P., Painter R.G., Singer S.J. Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J. Cell Biol. 1976;70(1):193–203.
18. Pant H.C., Virmani M., Gallant P.E. Calciuminduced proteolysis of spectrin and band 3 protein in rat erythrocyte membranes. Biochem. Biophys. Res. Commun. 1983;117(2):372–377.
19. Ak G., Hamarat Şanlıer Ş. Erythrocyte membrane vesicles coated biomimetic and targeted doxorubicin nanocarrier: Development, characterization and in vitro studies. J. Mol. Struct. 2020;1205:127664.
20. AlQahtani S.A., Harisa G.I., Badran M.M., Al- Ghamdi K.M., Kumar A., Salem-Bekhit M.M., Ahmad S.F., Alanazi F.K. Nano-erythrocyte membrane-chaperoned 5-fluorouracil liposomes as biomimetic delivery platforms to target hepatocellular carcinoma cell lines. Artif. Cells Nanomedicine Biotechnol. 2019;47(1):989–996.
21. Hu C-M.J., Zhang L., Aryal S., Cheung C., Fang R.H., Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. U.S.A. 2011;108(27):10980–10985.
22. Malhotra S., Dumoga S., Sirohi P., Singh N. Red blood cells-derived vesicles for delivery of lipophilic drug camptothecin. ACS Appl. Mater. Interfaces. 2019;11(25):22141–22151.
23. Chang M., Hsiao J.-K., Yao M., Chien L.-Y., Hsu S.-C., Ko B.-S., Chen S.-T., Liu H.-M., Chen Y.-C., Yan C.-S., Huang, D.-M. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. Nanotechnology. 2010;21(23):235103.
24. Wang L.-Y., Shi X.-Y., Yang C.-S., Huang D.-M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale. 2013;5(1):416–421.
25. Hägerstrand H., Isomaa B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta BBA–Biomembr. 1992;1109(2):117–126.
26. Chung S.-M., Bae O.-N., Lim K.-M., Noh J.-Y., Lee M.-Y., Jung Y.-S., Chung J.-H. Lysophosphatidic acid induces thrombogenic activity through phosphatidylserine exposure and procoagulant microvesicle generation in human erythrocytes. Arterioscler. Thromb. Vasc. Biol. 2007;27(2):414–421.
27. Vodyanoy V. Thermodynamic evaluation of vesicles shed by erythrocytes at elevated temperatures. Colloids Surf. B Biointerfaces. 2015;133:231–238.
28. Allan D., Billah M.M., Finean J.B., Michell R.H. Release of diacylglycerol-enriched vesicles from erythrocytes with increased intracellular [Ca2+]. Nature. 1976;261(5555):58–60.
29. Pompeo G., Girasole M., Cricenti A., Boumis G., Bellelli A., Amiconi S. Erythrocyte death in vitro induced by starvation in the absence of Ca2+. Biochim. Biophys. Acta BBA–Biomembr. 2010;1798(6):1047–1055.
30. Allan D., Thomas P., Limbrick AR. The isolation and characterization of 60 nm vesicles (‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes. Biochem. J. 1980;188(3):881–887.
31. Shukla S.D., Berriman J., Coleman R., Finean J.B., Michell R.H. Membrane protein segregation during release of microvesicles from human erythrocytes. FEBS Lett. 1978;90(2):289–292.
32. Bütikofer P., Brodbeck U., Ott P. Modulation of erythrocyte vesiculation by amphiphilic drugs. Biochim. Biophys. Acta BBA–Biomembr. 1987;901(2):291–295.
33. Chernitsky E.A., Senkovich O.A., Rozin V.V. Dependence of erythrocyte vesiculation and hemolysis parameters on the concentration of sodium dodecyl sulfate. Vesicular-competitive hemolysis. Membr. Cell Biol. 2001;14(5):629–636.
34. Senkovich O.A., Chernitsky E.A. On the size of pores arising in erythrocytes under the action of detergents. Membr. Cell Biol. 1998;11(5):679–689. 35. Shalel S., Streichman S., Marmur A. The mechanism of hemolysis by surfactants: effect of solution composition. J. Colloid Interface Sci. 2002;252(1):66–76.
35. Moolenaar W.H., Van Meeteren L.A., Giepmans B.N.G. The ins and outs of lysophosphatidic acid signaling. BioEssays. 2004;26(8):870–881.
36. Baar S. Mechanisms of delayed red cell destruction after thermal injury. An experimental in vitro SEM study. Br. J. Exp. Pathol. 1974;55(2):187–193.
37. Baar S., Arrowsmith D.J. Thermal damage to red cells. J. Clin. Pathol. 1970;23(7):572–576.
38. Christel S., Little C. Morphological changes during heating of erythrocytes from stored human blood. J. Therm. Biol. 1984;9(3):221–228.
39. Kozlova E., Chernysh A., Sergunova V., Manchenko E., Moroz V., Kozlov A. Conformational distortions of the red blood cell spectrin matrix nanostructure in response to temperature changes in vitro. Scanning. 2019;2019:8218912.
40. Parshina E.Yu., Yusipovich A.I., Platonova A.A., Grygorczyk R., Maksimov G.V., Orlov S.N. Thermal inactivation of volume-sensitive K+,Cl− cotransport and plasma membrane relief changes in human erythrocytes. Pflüg. Arch.–Eur. J. Physiol. 2013;465(7):977–983.
41. Bosman G.J.C.G.M., Lasonder E., Groenen- Döpp Y.A.M., Willekens F.L.A., Werre J.M. The proteome of erythrocyte-derived microparticles from plasma: new clues for erythrocyte aging and vesiculation. J. Proteomics. 2012;76:203–210.
42. Thangaraju K., Neerukonda S.N., Katneni U., Buehler P.W. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int. J. Mol. Sci. 2020;22(1):153.
43. Huisjes R., Bogdanova A., Van Solinge W.W., Schiffelers R.M., Kaestner L., Van Wijk R. Squeezing for life – properties of red blood cell deformability. Front. Physiol. 2018;9:656.
44. Kitahama Y., Ozaki Y. Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems. The Analyst. 2016;141(17):5020–5036.
45. Wood B.R., Caspers P., Puppels G.J., Pandiancherri S., McNaughton D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 2007;387(5):1691–1703.
Review
For citations:
Parshina E.Yu., Frolova L.S., Maximov G.V. The morphology of erythrocytes reveals differences in the mechanisms of erythrocyte derived extracellular vesicle formation. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3S):23-30. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-4


























