Membrane-associated vesicles: approaches for isolation and characterization
https://doi.org/10.55959/MSU0137-0952-16-80-3S-5
Abstract
Intercellular communication is a critical component of maintaining tissue homeostasis. One of the communication methods is the transfer of a wide range of biologically active molecules – proteins, nucleic acids (primarily non-coding RNA) and lipids – in extracellular vesicles (EV). This allows EV-producing cells to change the metabolic and transcriptional activity of individual target cell populations over a wide range and “tune” it in accordance with tissue needs. Most of the existing studies are focused on the composition and functions of EVs secreted into the external environment, while the study of the membrane-associated vesicle subclass (membrane-associated vesicles, MAV) is hampered by the lack of generally accepted methods for their isolation from different cell types, including cultured ones, and characterization. In this paper, we present a protocol for isolating the MAV fraction of cultured mesenchymal stromal/stem cells while preserving the morphology and viability of the cells themselves using hyaluronidase treatment. This protocol demonstrated the highest efficiency compared to other tested methods and allows one to obtain a fraction significantly enriched in vesicles, as demonstrated by nanoparticle tracking analysis and transmission electron microscopy. A comparative analysis of the characteristics of MAV and EV secreted into the medium showed that the proposed MAV isolation protocol allows one to obtain a fraction with a similar particle concentration, but they are smaller in size compared to EV. Thus, the isolation method we described allows one to obtain a MAV fraction for further analysis of their composition and functional features.
Keywords
About the Authors
O. A. GrigorievaRussian Federation
27–10 Lomonosovsky Prospect, Moscow, 119234
N. A. Basalova
Russian Federation
27–10 Lomonosovsky Prospect, Moscow, 119234
M. A. Vigovskiy
Russian Federation
27–10 Lomonosovsky Prospect, Moscow, 119234
U. D. Dyachkova
Russian Federation
27–10 Lomonosovsky Prospect, Moscow, 119234
D. V. Bagrov
Russian Federation
1–12 Leninskie gory, Moscow, 119234
O. S. Sokolova
Russian Federation
1–12 Leninskie gory, Moscow, 119234
A. Yu. Efimenko
Russian Federation
27–10 Lomonosovsky Prospect, Moscow, 119234
References
1. Williams T., Salmanian G., Burns M., Maldonado V., Smith E., Porter R.M., Song Y.H., Samsonraj R.M. Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications. Biochimie. 2023;207:33–48.
2. van Griensven M., Balmayor E.R. Extracellular vesicles are key players in mesenchymal stem cells’ dual potential to regenerate and modulate the immune system. Adv. Drug Deliv. Rev. 2024:115203.
3. Manzoor T., Saleem A., Farooq N., Dar L.A., Nazir J., Saleem S., Ismail S., Gugjoo M.B., Shiekh P.A. Extracellular vesicles derived from mesenchymal stem cells – a novel therapeutic tool in infectious diseases. Inflamm. Regener. 2023;43(1):17.
4. Welsh J.A., Goberdhan D.C.I., O’Driscoll L., et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J. Extracell. Vesicles. 2024;13(2):e12404.
5. Zhou Y., Qin Y., Sun C., Liu K., Zhang W., Gaman M.A., Chen Y. Cell-bound membrane vesicles contain antioxidative proteins and probably have an antioxidative function in cells or a therapeutic potential. J. Drug Delivery Sci. Technol. 2023;81:104240.
6. Моисеенко А.В., Басалова Н.А., Багров Д.В., Трифонова Т.С., Виговский М.А., Дьячкова У.Д., Григорьева О.А., Новоселецкая Е.С., Ефименко А.Ю., Соколова О.С. Прямая визуализация внеклеточных везикул на мембране мезенхимных стволовых/стромальных клеток человека методом криоэлектронной микроскопии. Наноиндустрия. 2024;14(7–8):434–443.
7. Konoshenko, Zamakhov I.M., Anashkin V.A., Moiseenko A.V., Orlov V.N., Vorobyeva N.N., Sokolova O.S., Baykov A.A. The structure and nucleotide-binding characteristics of regulated cystathionine β-synthase domain-containing pyrophosphatase without one catalytic domain. Int. J. Mol. Sci. 2023;24(24):17160.
8. Tang Q., Zhang X., Zhang W., Zhao S., Chen Y. Identification and characterization of cell-bound membrane vesicles. Biochim. Biophys. Acta, Biomembr. 2017;1859(5):756–766.
9. Zhang Y., Liu Y., Zhang W., Tang Q., Zhou Y., Li Y., Rong T., Wang H., Chen Y. Isolated cell-bound membrane vesicles (CBMVs) as a novel class of drug nanocarriers. J. Nanobiotechnol. 2020;18(1):69.
10. Tamkovich S., Tutanov O., Efimenko A., Grigoreva A., Ryabchikova E., Kirushina N., Vlassov V., Tkachuk V., Laktionov P. Blood circulating exosomes contain distinguishable fractions of free and cell-surface-associated vesicles. Curr. Mol. Med. 2019;19(4):273–285.
11. Petrova T., Kalinina O., Aquino A., Grigoryev E., Dubashynskaya N.V., Zubkova K., Kostareva A., Golovkin A. Topographic distribution of miRNAs (miR-30a, miR-223, miR-let-7a, miR-let-7f, miR-451, and miR-486) in the plasma extracellular vesicles. ncRNA. 2024;10(1):15.
12. Rilla K., Siiskonen H., Tammi M., Tammi R. Hyaluronan- coated extracellular vesicles—a novel link between hyaluronan and cancer. Adv. Cancer Res. 2014:121–148.
13. Ragni E., Perucca Orfei C., De Luca P., Lugano G., Viganò M., Colombini A., Valli F., Zacchetti D., Bollati V., de Girolamo L. Interaction with hyaluronan matrix and miRNA cargo as contributors for in vitro potential of mesenchymal stem cell-derived extracellular vesicles in a model of human osteoarthritic synoviocytes. Stem Cell Res. Ther. 2019;10(1):109.
14. Härkönen K., Oikari S., Kyykallio H., Capra J., Hakkola S., Ketola K., Thanigai Arasu U., Daaboul G., Malloy A., Oliveira C., Jokelainen O., Sironen R., Hartikainen J.M., Rilla K. CD44s assembles hyaluronan coat on filopodia and extracellular vesicles and induces tumorigenicity of MKN74 gastric carcinoma. Cells. 2019;8(3):276.
15. Basalova N., Sagaradze G., Arbatskiy M., Evtushenko E., Kulebyakin K., Grigorieva O., Akopyan Z., Kalinina N., Efimenko A. Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated microRNAs within extracellular vesicles. Cells. 2020;9(5):1272.
Review
For citations:
Grigorieva O.A., Basalova N.A., Vigovskiy M.A., Dyachkova U.D., Bagrov D.V., Sokolova O.S., Efimenko A.Yu. Membrane-associated vesicles: approaches for isolation and characterization. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3S):31-37. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-5


























