Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Visualization of artificial polynucleosomal constructs with atomic force microscopy

https://doi.org/10.55959/MSU0137-0952-16-80-3S-8

Abstract

Genetic material of the cell in interphase nucleus is present in a form of a dense DNA-protein structure named chromatin. Structure and dynamics of single nucleosome, which is the basic unit of DNA compactization, is currently well-studied, although the data about the structural and functional organization of higher-level chromatin folding, is still scarce. In the present work, a method of visualization of polynucleosomal constructs using atomic force microscopy is proposed. Polynucleosome assembly on a plasmid with the use of recombinant histone octamers was demonstrated. It was established that glutaraldehyde treatment of polynucleosome sample before its immobilization on a surface preserves nucleosomes, and their height and width corresponds well with previously obtained data. Plasmids themselves were predominantly In extended conformation, which may help studying DNA-protein interactions.

About the Authors

A. V. Lyubitelev
Bioengineering Department, School of Biology, Lomonosov Moscow State University
Russian Federation

 1–12 Leninskiye Gory, Moscow, 119234 



D. V. Bagrov
Bioengineering Department, School of Biology, Lomonosov Moscow State University
Russian Federation

 1–12 Leninskiye Gory, Moscow, 119234 



O. V. Geraskina
Institute of Gene Biology, Russian Academy of Sciences
Russian Federation

 34/5 Vavilov Str., Moscow, 119334 



V. M. Studitsky
Bioengineering Department, School of Biology, Lomonosov Moscow State University; Fox Chase Cancer Center
Russian Federation

 1–12 Leninskiye Gory, Moscow, 119234 

 333 Cottman Ave., Philadelphia, Pennsylvania, 19111 



References

1. Luger K., Mäder A.W., Richmond R.K., Sargent D.F., Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–260.

2. Olins D.E., Olins A.L. Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 2003;4(10):809–814.

3. Finch J.T., Klug A. Solenoidal model for superstructure in chromatin. Proc. Natl. Acad. Sci. U.S.A. 1976;73(6):1897–1901.

4. Wu C., Bassett A., Travers A. A variable topology for the 30-nm chromatin fibre. EMBO Rep. 2007;8(12):1129–1134.

5. Robinson P.J.J., Fairall L., Huynh V.A.T., Rhodes D. EM measurements define the dimensions of the “30-nm” chromatin fiber: evidence for a compact, interdigitated structure. Proc. Natl. Acad. Sci. U.S.A. 2006;103(17):6506–6511.

6. Grigoryev S.A., Woodcock C.L. Chromatin organization – the 30 nm fiber. Exp. Cell Res. 2012;318(12):1448–1455.

7. Scheffer M.P., Eltsov M., Frangakis A.S. Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc. Natl. Acad. Sci. U.S.A. 2011;108(41):16992–16997.

8. Eltsov M., Maclellan K.M., Maeshima K., Frangakis A.S., Dubochet J. Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc. Natl. Acad. Sci. U.S.A. 2008;105(50):19732–19737.

9. Nishino Y., Eltsov M., Joti Y., Ito K., Takata H., Takahashi Y., Hihara S., Frangakis A.S., Imamoto N., Ishikawa T., Maeshima K. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure. EMBO J. 2012;31(7):1644–1653.

10. Hsieh T.H.S., Weiner A., Lajoie B., Dekker J., Friedman N., Rando O.J. Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell. 2015;162(1):108–119.

11. Razin S.V., Gavrilov A.A. Chromatin without the 30-nm fiber: Constrained disorder instead of hierarchical folding. Epigenetics. 2014;9(5):653–657.

12. Maeshima K. The shifting paradigm of chromatin structure: from the 30-nm chromatin fiber to liquid-like organization. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2025;101(6):339–356.

13. Schwarzer W., Abdennur N., Goloborodko A., Pekowska A., Fudenberg G., Loe-Mie Y., Fonseca N.A., Huber W., Haering C.H., Mirny L., Spitz F. Two independent modes of chromatin organization revealed by cohesin removal. Nature. 2017;551(7678):51–56.

14. Bintu B., Mateo L.J., Su J.H., Sinnott-Armstrong N.A., Parker M., Kinrot S., Yamaya K., Boettiger A.N., Zhuang X. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362(6413):eaau1783.

15. Gibson B.A., Blaukopf C., Lou T., Chen L., Doolittle L.K., Finkelstein I., Narlikar G.J., Gerlich D.W., Rosen M.K. In diverse conditions, intrinsic chromatin condensates have liquid-like material properties. Proc. Natl. Acad. Sci. U.S.A. 2023;120(18):e2218085120.

16. Zidovska A. Chromatin: Liquid or solid? Cell. 2020;183(7):1737–1739.

17. Maeshima K., Rogge R., Tamura S., Joti Y., Hikima T., Szerlong H., Krause C., Herman J., Seidel E., DeLuca J., Ishikawa T., Hansen J.C. Nucleosomal arrays self-assemble into supramolecular globular structures lacking 30-nm fibers. EMBO J. 2016;35(10):1115–1132.

18. Farr S.E., Woods E.J., Joseph J.A., Garaizar A., Collepardo-Guevara R. Nucleosome plasticity is a critical element of chromatin liquid-liquid phase separation and multivalent nucleosome interactions. Nat. Commun. 2021;12(1):2883.

19. Miron E., Oldenkamp R., Brown J.M., Pinto D.M.S., Xu C.S., Faria A.R., Shaban H.A., Rhodes J.D.P., Innocent C., de Ornellas S., Hess H.F., Buckle V., Schermelleh L. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci. Adv. 2020;6(39):eaba8811.

20. Watson M., Stott K. Disordered domains in chromatin-binding proteins. Essays Biochem. 2019;63(1):147–156.

21. Dias J.K., D’Arcy S. Beyond the mono-nucleosome. Biochem. Soc. Trans. 2025;53(1):BCJ20240452.

22. Li W., Hu J., Song F., et al. Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res. 2024;34(10):707–724.

23. Thåström A., Lowary P.T., Widlund H.R., Cao H., Kubista M., Widom J. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. J. Mol. Biol. 1999;288(2):213–229.

24. Polikanov Y.S., Studitsky V.M. Analysis of distant communication on defined chromatin templates in vitro. DNA-Protein Interactions. Methods in Molecular Biology, vol. 543. Eds. B. Leblanc and T. Moss. Humana Press; 2009:563–576.

25. Luger K., Rechsteiner T.J., Richmond T.J. Preparation of nucleosome core particle from recombinant histones. Chromatin. Methods in Enzymology, vol. 304. Academic Press; 1999:3–19.

26. Gaykalova D.A., Kulaeva O.I., Bondarenko V.A., Studitsky V.M. Preparation and analysis of uniquely positioned Mononucleosomes. Chromatin Protocols. Methods in Molecular Biology, vol. 523. Ed. S.P. Chellappan. Totowa: Humana Press; 2009:109–123.

27. Yaminsky I., Akhmetova A., Meshkov G. Femtoscan online software and visualization of nano-objecs in high-resolution microscopy. NanoRus. 2018;(6):414–416.

28. Utley R.T., Owen-Hughes T.A., Juan L.J., Côté J., Adams C.C., Workman J.L. In vitro analysis of transcription factor binding to nucleosomes and nucleosome disruption/ displacement. RNA Polymerase and Associated Factors, Part B. Methods in Enzymology, vol. 274. Ed. S. Adhya. Academic Press: 1996;274:276–291.

29. Moreno-Herrero F., Colchero J., Baró A.M. DNA height in scanning force microscopy. Ultramicroscopy. 2003;96(2):167–174.

30. Krzemien K.M., Beckers M., Quack S., Michaelis J. Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution. PLoS One. 2017;12(3):e0173459.

31. Nazarov I., Chekliarova I., Rychkov G., Ilatovskiy A.V., Crane-Robinson C., Tomilin A. AFM studies in diverse ionic environments of nucleosomes reconstituted on the 601 positioning sequence. Biochimie. 2016;121:5–12.

32. Leuba S.H., Yang G., Robert C., Samori B., Van Holde K., Zlatanova J., Bustamante C. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc. Natl. Acad. Sci. U.S.A. 1994;91(24):11621–11625.

33. Klinov D.V., Neretina T.V., Prokhorov V.V., Dobrynina T.V., Aldarov K.G., Demin V.V. High-resolution atomic force microscopy of DNA. Biochemistry (Mosc). 2009;74(10):1150–1154.

34. Chen X., Roberts C.J., Zhang J., Davies M.C., Tendler S.J.B. Phase contrast and attraction–repulsion transition in tapping mode atomic force microscopy. Surface Science. 2002;519(1–2):L593–L598.

35. Dubrovin E.V., Schächtele M., Schäffer T.E. Nanotemplate-directed DNA segmental thermal motion. RSC Adv. 2016;6(83):79584–79592.

36. Hizume K., Yoshimura S.H., Takeyasu K. Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics. Cell Biochem. Biophys. 2004;40(3):249–262.


Review

For citations:


Lyubitelev A.V., Bagrov D.V., Geraskina O.V., Studitsky V.M. Visualization of artificial polynucleosomal constructs with atomic force microscopy. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3S):52-58. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-8

Views: 104


ISSN 0137-0952 (Print)