PARP1-dependent alterations in nucleosome organization: potential involvement of p53
https://doi.org/10.55959/MSU0137-0952-16-80-3S-10
Abstract
Chromatin of eukaryotic organisms is a complexly organized and dynamic complex. Chromatin proteins provide proper regulation of gene expression, DNA replication, and DNA repair. Among the most important regulators of chromatin architecture among non-histone proteins are p53 and PARP1, which are involved in the cellular response to DNA damage. In the present study, we investigated the cooperative and competitive binding of the DNA-binding domain (DBD) of p53 and the enzyme PARP1 to mononucleosomes reconstituted on the Widom 603 sequence with an embedded p53 binding site. To detect interactions, the electrophoretic mobility shift assay (EMSA) method with fluorescently labeled DNA. Complexes were formed in two ways: nucleosomes were pre-incubated with p53 DBD and then PARP1 was added, or the nucleosome–PARP1 complex was formed first and then p53 DBD was introduced. The results showed that the order of protein addition determines the nature of their interaction with the nucleosome: at low p53 concentrations, displacement of this protein by PARP1 is observed, while at higher p53 concentrations, stable nucleosome–p53 complexes are formed, undisturbed by PARP1. No stable ternary nucleosome–p53–PARP1 complexes were detected.
About the Authors
D. O. KoshkinaRussian Federation
1–12 Leninskie gory, Moscow, 119234
34/5 Vavilov Str., Moscow, 119334
N. V. Maluchenko
Russian Federation
1–12 Leninskie gory, Moscow, 119234
A. M. Novichkova
Russian Federation
1–12 Leninskie gory, Moscow, 119234
A. V. Feofanov
Russian Federation
1–12 Leninskie gory, Moscow, 119234
34/5 Vavilov Str., Moscow, 119334
V. M. Studitsky
Russian Federation
1–12 Leninskie gory, Moscow, 119234
333 Cottman Ave., Philadelphia, 19111, Pennsylvania
References
1. Luger K., Hansen J.C. Nucleosome and chromatin fiber dynamics. Curr. Opin. Struct. Biol. 2005;15(2):188–196.
2. Bavykin S.G., Usachenko S.I., Zalensky A.O., Mirzabekov A.D. Structure of nucleosomes and organization of internucleosomal DNA in chromatin. J. Mol. Biol. 1990;212(3):495–511.
3. Luger K. Crystal structure of the nucleosome core particle at 2.8 A˚ resolution. Nature. 1997;389(6648):251–260.
4. Bednar J., Horowitz R.A., Grigoryev S.A., Carruthers L.M., Hansen J.C., Koster A.J., Woodcock C.L. Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc. Natl. Acad. Sci. U.S.A. 1998;95(24):14173–14178.
5. Luger K., Dechassa M.L., Tremethick D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat. Rev. Mol. Cell Biol. 2012;13(7):436–447.
6. Mishra L.N., Thiriet C., Vasudevan D. Editorial: Chromatin structure and function. Front. Genet. 2023;14:1140534.
7. Ko H.L., Ren E.C. Functional aspects of PARP1 in DNA repair and transcription. Biomolecules. 2012;2(4):524–548.
8. Ray Chaudhuri A., Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 2017;18(10):610–621.
9. Nakamoto M.Y., Rudolph J., Wuttke D.S., Luger K. Non-specific binding of RNA to PARP1 and PARP2 does not lead to catalytic activation. Biochemistry. 2019;58(51):5107–5111.
10. Muthurajan U.M., Hepler M.R.D., Hieb A.R., Clark N.J., Kramer M., Yao T., Luger K. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc. Natl. Acad. Sci. U.S.A. 2014;111(35):12752–12757.
11. Zhang S., Sun X., Jing Z., Qu F. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011;82(1):213–216.
12. Labuschagne C.F., Zani F., Vousden K.H. Control of metabolism by p53 – Cancer and beyond. Biochim. Biophys. Acta Rev. Cancer. 2018;1870(1):32–42.
13. Levine A.J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–331.
14. Borrero L.J.H., El-Deiry W.S. Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim. Biophys. Acta Rev. Cancer. 2021;1876(1):188556.
15. Sui X., Han W., Pan H. p53-induced autophagy and senescence. Oncotarget. 2015;6(14):11723–11724.
16. Wang X., Simpson E.R., Brown K.A. p53: Protection against tumor growth beyond effects on cell cycle and apoptosis. Cancer Res. 2015;75(23):5001–5007.
17. Fischer M., Schwarz R., Riege K., Förste S., Schwab K., Wiechens E., van Bömmel A., Hoffmann S. p53 reveals principles of chromatin remodeling and enhancer activation. Nucleic Acids Research. 2025;53(11):gkaf465.
18. Yu X., Buck M.J. Defining TP53 pioneering capabilities with competitive nucleosome binding assays. Genome Res. 2019;29(1):107–115.
19. Widom J. A relationship between the helical twist of DNA and the ordered positioning of nucleosomes in all eukaryotic cells. Proc. Natl. Acad. Sci. U.S.A. 1992;89(3):1095–1099.
20. Okorokov A.L., Sherman M.B., Plisson C., Grinkevich V., Sigmundsson K., Selivanova G., Milner J., Orlova E.V. The structure of p53 tumour suppressor protein reveals the basis for its functional plasticity. EMBO J. 2006;25(21):5191–5200.
21. Liu Z., Kraus W.L. Catalytic-independent functions of PARP-1 determine Sox2 pioneer activity at intractable genomic loci. Molecular Cell. 2017;65(4):589-603.e9.
22. Nozaki T., Masutani M. p53-dependent cell cycle checkpoint after DNA damage and its relevance to PARP1. Res. Rev. Insights. 2018;2(2):1–5.
23. Süsse S., Scholz C.J., Bürkle A., Wiesmüller L. Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells. Nucleic Acids Res. 2004;32(2):669–680.
24. Wang M., Wu W., Wu W., Rosidi B., Zhang L., Wang H., Iliakis G. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res. 2006;34(21):6170–6182.
25. Reinhardt H.C., Schumacher B. The p53 network: Cellular and systemic DNA damage responses in aging and cancer. Trends Genet. 2012;28(3):128–136.
26. Malanga M. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J. Biol. Chem. 1998;273(19):11839–11843.
Supplementary files
|
1. Неозаглавлен | |
| Subject | ||
| Type | Исследовательские инструменты | |
Download
(167KB)
|
Indexing metadata ▾ | |
Review
For citations:
Koshkina D.O., Maluchenko N.V., Novichkova A.M., Feofanov A.V., Studitsky V.M. PARP1-dependent alterations in nucleosome organization: potential involvement of p53. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):67-72. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-10


























