Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Analysis of heterochromatin mesoscale architecture by cryo-electron tomography

https://doi.org/10.55959/MSU0137-0952-16-80-3S-18

Abstract

Cryo-ET (cryo-electron tomography) is a powerful tool for studying the structure of biological objects in their native state. However, Cryo-ET is still not widely used to study cellular organelles including cell nucleus and chromatin in situ. In our work, we aimed to investigate the possibilities of employing Cryo-ET for studying the architecture of natively preserved chromatin, focusing on the possibility of using a cryoCLEM (cryo-correlative light and electron microscopy) approach to target final steps of sample preparation by focused ion beam (FIB) milling exactly to the area of interest – specifically, heterochromatin loci.

About the Authors

E. P. Kazakov
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie gory, Moscow, 119991

1–12 Leninskie gory, Moscow, 119234



Y. M. Chesnokov
Kurchatov Complex of NBICS Nature-Like Technologies, National Research Center “Kurchatov Institute”
Russian Federation

1 Academician Kurchatov Sq., Moscow, 123182



I. I. Kireev
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie gory, Moscow, 119991

1–12 Leninskie gory, Moscow, 119234



S. A. Golyshev
Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University
Russian Federation

1–40 Leninskie gory, Moscow, 119991



References

1. Tark-Dame M., Jerabek H., Manders E.M., van der Wateren I.M., Heermann D.W., van Driel R. Depletion of the chromatin looping proteins CTCF and cohesin causes chro matin compaction: insight into chromatin folding by polymer modelling. PLoS Comput. Biol. 2014;10(10):e1003877.

2. Hoencamp C., Rowland B.D. Genome control by SMC complexes. Nat. Rev. Mol. Cell Biol. 2023;24(9):633–650.

3. Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dekker J., Fuden berg G., Solovei I., Mirny L.A. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature. 2019;570(7761):395–399.

4. Shatskikh A.S., Abramov Y.A., Lavrov S.A. Trans-inactivation: Repression in a wrong place. Fly (Aus tin). 2017;11(2):96–103.

5. Weaver B.A., Cleveland D.W. Aneuploidy: instiga tor and inhibitor of tumorigenesis. Cancer Res. 2007;67(21):10103–10105.

6. Dubochet J., Sartori Blanc N. The cell in absence of aggregation artifacts. Micron. 2001;32(1):91–99.

7. Sengupta R., Poderycki M.J., Mattoo S. CryoAPEX – an electron tomography tool for subcellular localization of membrane proteins. J. Cell Sci. 2019;132(6):jcs222315.

8. Cremer T., Cremer M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2010;2(3):a003889.

9. Bintu B., Mateo L.J., Su J.H., Sinnott-Arm strong N.A., Parker M., Kinrot S., Yamaya K., Boetti ger A.N., Zhuang X. Super-resolution chromatin tracing re veals domains and cooperative interactions in single cells. Science. 2018;362(6413):eaau1783.

10. Huang K., Li Y., Shim A.R., Virk R.K.A., Agraw al V., Eshein A., Nap R.J., Almassalha L.M., Backman V., Szleifer I. Physical and data structure of 3D genome. Sci. Adv. 2020;6(2):eaay4055.

11. Gómez-García P.A., Portillo-Ledesma S., Neguem bor M.V., Pesaresi M., Oweis W., Rohrlich T., Wieser S., Meshorer E., Schlick T., Cosma M.P., Lakadamyali M. Mesoscale Modeling and single-nucleosome tracking reveal remodeling of clutch folding and dynamics in stem cell dif ferentiation. Cell Rep. 2021;34(2):108614.

12. Saksouk N., Simboeck E., Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015;8:3.

13. Maison C., Quivy J.P., Probst A.V., Almouzni G. Heterochromatin at mouse pericentromeres: a model for de novo heterochromatin formation and duplication during replication. Cold Spring Harb. Symp. Quant. Biol. 2010;75:155–165.

14. Mastronarde D.N. Dual-axis tomography: An ap proach with alignment methods that preserve resolution. J. Struct. Biol. 1997;120(3):343–352.

15. Liu Y.T., Zhang H., Wang H., Tao C.L., Bi G.Q., Zhou Z.H. Isotropic reconstruction for electron tomogra phy with deep learning. Nat. Commun. 2022;13(1):6482.

16. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Harten stein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open source platform for biological-image analysis. Nat. Methods. 2012;9(7):676–682.

17. Ou H.D., Phan S., Deerinck T.J., Inagaki A., Ellis man M.H., O’Shea C.C. ChromEMT: visualizing and re constructing chromatin ultrastructure and 3D organization in situ. Nat. Protoc. 2025;20(4):934–966.

18. Hou Z., Nightingale F., Zhu Y., MacGregor-Chat win C., Zhang P. Structure of native chromatin fibres re vealed by Cryo-ET in situ. Nat. Commun. 2023;14(1):6324.

19. Chen J.K., Liu T., Cai S., Ruan W., Ng C.T., Shi J., Surana U., Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J. 2025;44(9):2658–2694.


Review

For citations:


Kazakov E.P., Chesnokov Y.M., Kireev I.I., Golyshev S.A. Analysis of heterochromatin mesoscale architecture by cryo-electron tomography. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):118–123. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3S-18

Views: 2


ISSN 0137-0952 (Print)