Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Comparative study of auditory sensitivity in normal Wistar rats and heterozygous rats with reduced expression f the dopamine transporter (DAT-1) gene

https://doi.org/10.55959/MSU0137-0952-16-80-3-3

Abstract

The comparative electrophysiological study of auditory sensitivity of intact Wistar rats and heterozygous rats of the transgenic DAT-het line with a reduced expression level of the Slc6a3 gene encoding the dopamine reuptake transporter (DAT-1), providing an experimental model of dopaminergic neurons pathology, was performed. The amplitude and time parameters of auditory brainstem responses recorded in rats of both lines under presentation of paired clicks and single tones were analyzed. Generally, the auditory sensitivities of Wistar and DAT-het rats were similar, but a comparative analysis of the amplitudes of auditory brainstem response peaks, obtained from experimental animals, revealed a significantly greater amplitude of peak 1 in DAT-het rats. Thus, the data obtained suggest that DAT-het heterozygotes differ from rats with a normally functioning dopamine reuptake DAT-1 transporter by an increased level of dopaminergic signaling via activation of D1 receptors localized in the membranes of neurons of the cochlea spiral ganglion.

About the Authors

G. D. Khorunzhii
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Russian Federation

Torez Ave. 44, St. Petersburg, 194223



M. A. Egorova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Russian Federation

Torez Ave. 44, St. Petersburg, 194223



Z. S. Fesenko
Saint Petersburg State University, Saint Petersburg State University Institute of Translational Biomedicine
Russian Federation

Universitetskaya Emb. 7/9, St. Petersburg, 199034



E. V. Efimova
Saint Petersburg State University, Saint Petersburg State University Institute of Translational Biomedicine
Russian Federation

Universitetskaya Emb. 7/9, St. Petersburg, 199034



References

1. Hirsch E.C., Hunot S., Faucheux B., Agid Y., Mizuno Y., Mochizuki H., Tatton W., Tatton N., Olanow W. Dopaminergic neurons degenerate by apoptosis in Parkinson’s disease. Mov Disord. 1999;14(2):383–385.

2. Viggiano D., Vallone D., Ruocco L.A., Sadile A.G. Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci Biobehav. Revs. 2003; 27(7):683–689.

3. Mehler-Wex C., Riederer P., Gerlach M. Dopaminergic dysbalance in distinct basal ganglia neurocircuits: implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotox Res. 2006;10(3–4):167–179.

4. Zhou Z., Yan Y., Gu H., Sun R., Liao Z. Dopamine in the prefrontal cortex plays multiple roles in the executive function of patients with Parkinson’s disease. Neural Regenerat. Res. 2024;19(8):1759–1767.

5. Soleimani R., Jalali M.M., Faghih H.A. Comparing the prevalence of attention deficit hyperactivity disorder in hearing-impaired children with normal-hearing peers. Arch. Pediatr. 2020;27(8):432–435.

6. Tsur N., Zloof Y., Rittblat M., Reuven Y., Simchoni M., Derazne E., Yitzchaki Z., Adler L., Shlaifer A., Manuva O., Beer Z. Hearing impairment and severe attention deficit/hyperactivity disorder: A nationwide study. Otol Neurotol. 2024;45(3):e142-e146.

7. Leo D., Gainetdinov R.R. Transgenic mouse models for ADHD. Cell Tissue Res. 2013;354(1):259–271.

8. Rahi V., Kumar P. Animal models of attention-deficit hyperactivity disorder (ADHD). Interntnl. J. Develop. Neurosci. 2021;81(2):107–124.

9. Regan S.L., Hufgard J.R., Pitzer E.M., Sugimoto C., Hu Y.C., Williams M.T., Vorhees C.V. Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, under-response to amphetamine, and disrupted dopamine markers. Neurobiol. Disease. 2019;130:104494.

10. Regan S.L., Williams M.T., Vorhees C.V. Review of rodent models of attention deficit hyperactivity disorder. Neurosci. Biobehav. Revs. 2022;132:621–637.

11. Gainetdinov R.R., Jones S.R., Caron M.G. Functional hyperdopaminergia in dopamine transporter knockout mice. Biol. Psychiatry. 1999;46(3):303–311.

12. Shen H.-W., Hagino Y., Kobayashi H., Shinohara-Tanaka K., Ikeda K., Yamamoto H., Yamamoto T., Lesch K.-P., Murphy D.L., Hall F.S., Uhl G.R., Sora I. Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacol. 2004;29(10):1790–1799.

13. Leo D., Sukhanov I., Zoratto F., Illiano P., Caffino L. et al. Pronounced hyperactivity, cognitive dysfunctions, and BDNF dysregulation in dopamine transporter knock-out rats. J. Neurosci. 2018;38(8):1959–1972.

14. Lloyd J.T., Yee A.G., Kalligappa P.K., Jabed A., Cheung P.Yu., Todd K.L., Karunasinghe R.N., Vlajkovic S.M., Freestone P.S., Lipski J. Dopamine dysregulation and altered responses to drugs affecting dopaminergic transmission in a new dopamine transporter knockout (DAT-KO) rat model. Neuroscience. 2022;491:43–64.

15. Lev A., Sohmer H. Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electro-cochleogram). Arch. Klin. Exp. Ohren. Nasen. Kehlkopfheilkd. 1972;201(2):79–90.

16. Chiappa K.H., Gladstone K.J., Young R.R. Brain stem auditory evoked responses: studies of waveform variations in 50 normal human subjects. Arch. Neurol. 1979;36(2):81–87.

17. Church M.W., Jen K.L.C., Stafferton T., Hotra J.W., Adams B.R. Reduced auditory acuity in rat pups from excess and deficient omega-3 fatty acid consumption by the mother. Neurotoxicol. Teratol. 2007;29(2):203–210.

18. Alvarado J.C., Fuentes-Santamaría V., Jareno-Flores T., Blanco J.L., Juiz J.M. Normal variations in the morphology of auditory brainstem response (ABR) waveforms: a study in Wistar rats. Neurosci. Res. 2012;73(4):302–311.

19. Jafarzadeh S, Pourbakht A. Morphology variations of click-evoked auditory brainstem response with low and high rate stimuli in rat. Aud. Vestib. Res. 2018;28(1):22–27.

20. Adinolfi A., Zelli S., Leo D., Carbone C., Mus L., Illiano P., Alleva E., Gainetdinov R.R., Adriani W. Behavioral characterization of DAT-KO rats and evidence of asocial-like phenotypes in DAT-HET rats: The potential involvement of norepinephrine system. Behav Brain Res. 2019;359:516–527.

21. Niu X., Canlon B. The signal transduction pathway for the dopamine D1 receptor in the guinea-pig cochlea. Neuroscience. 2006;137(3):981–990.

22. Darrow K.N., Simons E.J., Dodds L., Liberman M.C. Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J. Comp. Neurol. 2006;498(3):403–414.

23. Maison S.F., Liu X.P., Eatock R.A., Sibley D.R., Grandy D.K., Liberman M.C. Dopaminergic signaling in the cochlea: receptor expression patterns and deletion phenotypes. J. Neurosci. 2012;32(1):344–355.

24. Le Prell C.G., Halsey K., Hughes L.F., Dolan D.F., Bledsoe S.C. Disruption of lateral olivocochlear neurons via a dopaminergic neurotoxin depresses sound-evoked auditory nerve activity. J. Assoc. Res. Otolaryngol. 2005;6(1):48–62.

25. Wu J.S., Yi E., Manca M., Javaid H., Lauer A.M., Glowatzki E. Sound exposure dynamically induces dopamine synthesis in cholinergic LOC efferents for feedback to auditory nerve fibers. Elife. 2020;9:e52419.

26. Kitcher S.R., Pederson A.M., Weisz C.J. Diverse identities and sites of action of cochlear neurotransmitters. Hear. Res. 2022;419:e.108278.

27. Sanna F., Bratzu J., Serra M.P., Leo D., Quartu M., Boi M., Espinoza S., Gainetdinov R.R., Rosaria Melis M., Argiolas A. Altered sexual behavior in dopamine transporter (DAT) knockout male rats: a behavioral, neurochemical and intracerebral microdialysis study. Frontiers Behav. Neurosci. 2020;14:58.

28. Valdés-Baizabal C., Carbajal G.V., Pérez-González D., Malmierca, M.S. Dopamine modulates subcortical responses to surprising sounds. PLoS Biol. 2020;18(6):e3000744.


Review

For citations:


Khorunzhii G.D., Egorova M.A., Fesenko Z.S., Efimova E.V. Comparative study of auditory sensitivity in normal Wistar rats and heterozygous rats with reduced expression f the dopamine transporter (DAT-1) gene. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2025;80(3):165-172. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-80-3-3

Views: 10


ISSN 0137-0952 (Print)