Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

МАЛЫЕ БЕЛКИ ТЕПЛОВОГО ШОКА И ДИАБЕТ

Аннотация

Обзор посвящен анализу возможного участия малых белков теплового шока в различных клеточных процессах, возникающих при диабете. Показано, что диабет приводит к метаболическому стрессу, сопровождающемуся изменением обмена углеводов, накоплением продуктов гликирования и гликозилирования, модуляцией активности протеинкиназ, изменением ре­докс состояния клетки и увеличением концентрации активных форм кислорода. Все эти про­ цессы могут активировать экспрессию малых белков теплового шока. Диабет вызывает увели­чение концентрации некоторых малых белков теплового шока в сердце, сетчатке, некоторых отделах мозга, а также в клетках почек. Повышение концентрации малых белков теплового шока может улучшать эффективность передачи сигнала от инсулинового рецептора внутрь клетки, защищает клетки от окислительного стресса и предотвращает их апоптоз. Проанали­ зированы различные способы повышения уровня экспрессии малых белков теплового шока. Подробно рассмотрены различные механизмы ковалентной модификации малых белков теп­ лового шока под действием углеводов и продуктов их метаболизма. Приведены данные, сви­ детельствующие о том, что гипергликемия сопровождается модификацией различных амино­кислотных остатков в составе малых белков теплового шока, и это может приводить к из­менению их структуры, химическому “сшиванию” и изменению их физиологически важных свойств. Дальнейшее подробное исследование малых белков теплового шока может позволить использовать эти белки в качестве одной из возможных перспективных мишеней при разра­ботке методов лечения диабета.

Об авторах

Николай Борисович Гусев
биологический факультет МГУ
Россия
докт. биол. наук, чл.­корр. РАН, проф., зав кафедрой биохимии


Мария Викторовна Судницына
биологический факультет МГУ
Россия
канд. биол. наук, ассистент кафедры биохимии


Список литературы

1. Dedov I.I. Diabetes mellitus­a dangerous treat to the mankind // Vestn. Ross. Akad. Med. Nauk. 2012. N 1. P. 7—13.

2. Brownlee M. Biochemistry and molecular cell biology of diabetic complications // Nature. 2001. Vol. 414. N 6865. P. 813—820.

3. Basha E., O’Neill H., Vierling E. Small heat shock proteins and alpha­crystallins: dynamic proteins with flexible functions // Trends Biochem. Sci. 2012. Vol. 37. N 3. P. 106—117.

4. Mymrikov E.V., Seit­Nebi A.S., Gusev N.B. Large potentials of small heat shock proteins // Physiol. Rev. 2011. Vol. 91. N 4. P. 1123—1159.

5. Gruden G., Bruno G., Chaturvedi N., Burt D., Schalkwijk C., Pinach S., Stehouwer C.D., Witte D.R., Fuller J.H., Perin P.C., Group E.P.C.S. Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: a novel circulating marker for diabetic neuropathy // Diabetes. 2008. Vol. 57. N 7. P. 1966—1970.

6. Burt D., Bruno G., Chaturvedi N., Schalkwijk C., Stehouwer C.D., Witte D.R., Fuller J.H., Pinach S., Perin P.C., Gruden G. Anti­heat shock protein 27 antibody levels and diabetes complications in the EURODIAB study // Diabetes Care. 2009. Vol. 32. N 7. P. 1269—1271.

7. Burut D.F., Borai A., Livingstone C., Ferns G. Serum heat shock protein 27 antigen and antibody levels appear to be related to the macrovascular complications associated with insulin resistance: a pilot study // Cell Stress Chaperones. 2010. Vol. 15. N 4. P. 379—386.

8. Tezel G., Wax M.B. The mechanisms of hsp27 antibody­mediated apoptosis in retinal neuronal cells // J. Neurosci. 2000. Vol. 20. N 10. P. 3552—3562.

9. Pourhamidi K., Dahlin L.B., Boman K., Rolandsson O. Heat shock protein 27 is associated with better nerve function and fewer signs of neuropathy // Diabetologia. 2011. Vol. 54. N 12. P. 3143—3149.

10. Hooper P.L., Balogh G., Rivas E., Kavanagh K., Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes // Cell Stress Chaperones. 2014. Vol. 19. N 4. P. 447—464.

11. Reddy V.S., Kumar C.U., Raghu G., Reddy G.B. Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions // Arch. Biochem. Biophys. 2014. Vol. 558. P. 1—9.

12. Reddy V.S., Raghu G., Reddy S.S., Pasupulati A.K., Suryanarayana P., Reddy G.B. Response of small heat shock proteins in diabetic rat retina // Invest. Ophthalmol. Vis. Sci. 2013. Vol. 54. N 12. P. 7674—7682.

13. Kumar P.A., Haseeb A., Suryanarayana P., Ehtesham N.Z., Reddy G.B. Elevated expression of lpha­ and alphaBcrystallins in streptozotocin­induced diabetic rat //Arch. Biochem. Biophys. 2005. Vol. 444. N 2. P. 77—83.

14. Losiewicz M.K., Fort P.E. Diabetes impairs the neuroprotective properties of retinal alpha­crystallins // Invest. Ophthalmol. Vis. Sci. 2011. Vol. 52. N 9. P. 5034—5042.

15. Mastrocola R., Barutta F., Pinach S., Bruno G., Perin P.C., Gruden G. Hippocampal heat shock protein 25 expression in streptozotocin­induced diabetic mice // Neuroscience. 2012. Vol. 227. P. 154—162.

16. Akbar M.T., Lundberg A.M., Liu K., Vidyadaran S., Wells K.E., Dolatshad H., Wynn S., Wells D.J., Latchman D.S., de Belleroche J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against lpha_i­induced seizures and hippocampal cell death // J. Biol. Chem. 2003. Vol. 278. N 22. P. 19956—19965.

17. Sanchez­Nino M.D., Sanz A.B., Sanchez­Lopez E., Ruiz­Ortega M., Benito­Martin A., Saleem M.A., Mathieson P.W., Mezzano S., Egido J., Ortiz A. HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II // Lab. Invest. 2012. Vol. 92. N 1. P. 32—45.

18. Dunlop M.E., Muggli E.E. Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress // Kidney Int. 2000. Vol. 57. N 2. P. 464—475.

19. Dai T., Natarajan R., Nast C.C., LaPage J., Chuang P., Sim J., Tong L., Chamberlin M., Wang S., Adler S.G. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton // Kidney Int. 2006. Vol. 69. N 5. P. 806—814.

20. McCarty M.F. Induction of heat shock proteins may combat insulin resistance // Med. Hypotheses. 2006. Vol. 66. N 3. P. 527—534.

21. Simar D., Jacques A., Caillaud C. Heat shock proteins induction reduces stress kinases activation, potentially improving insulin _lpha_ing in monocytes from obese subjects // Cell Stress Chaperones. 2012. Vol. 17. N 5. P. 615—621.

22. Arrigo A.P. Human small heat shock proteins: protein interactomes of homo­ and hetero­oligomeric complexes: an update // FEBS Lett. 2013. Vol. 587. N 13. P. 1959—1969.

23. Dai T., Patel­Chamberlin M., Natarajan R., Todorov I., Ma J., LaPage J., Phillips L., Nast C.C., Becerra D., Chuang P., Tong L., de Belleroche J., Wells D.J., Wang Y., Adler S.G. Heat shock protein 27 overexpression mitigates cytokine­induced islet apoptosis and streptozotocin­induced diabetes // Endocrinology. 2009. Vol. 150. N 7. P. 3031—3039.

24. Korngut L., Ma C.H., Martinez J.A., Toth C.C., Guo G.F., Singh V., Woolf C.J., Zochodne D.W. Overexpression of human HSP27 protects sensory neurons from diabetes // Neurobiol. Dis. 2012. Vol. 47. N 3. P. 436—443.

25. Najemnikova E., Rodgers C.D., Locke M. Altered heat stress response following streptozotocin­induced diabetes // Cell Stress Chaperones. 2007. Vol. 12. N 4. P. 342—352.

26. Sharma A.K., Bharti S., Ojha S., Bhatia J., Kumar N., Ray R., Kumari S., Arya D.S. Up­regulation of PPARgamma, heat shock protein­27 and ­72 by naringin attenuates insulin resistance, beta­cell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes // Br. J. Nutr. 2011. Vol. 106. N 11. P. 1713—1723.

27. Shao B., Tang M., Li Z., Zhou R., Deng Y., Nie C., Yuan Z., Zhou L., Tang M., Tong A., Wei Y. Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol // Amino Acids. 2012. Vol. 43. N 4. P. 1671—1678.

28. Diaz­Chavez J., Fonseca­Sanchez M.A., ArechagaOcampo E., Flores­Perez A., Palacios­Rodriguez Y., DominguezGomez G., Marchat L.A., Fuentes­Mera L., Mendoza­Hernandez G., Gariglio P., Lopez­Camarillo C. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy // PloS ONE. 2013. Vol. 8. N 5. e64378.

29. Sharma K.K., Santhoshkumar P. Lens aging: effects of crystallins // Biochim. Biophys. Acta. 2009. Vol. 1790. N 10. P. 1095—1108.

30. Groenen P.J., Merck K.B., de Jong W.W., Bloemendal H. Structure and modifications of the junior chaperone alpha­crystallin. From lens transparency to molecular pathology // Eur. J. Biochem. 1994. Vol. 225. N 1. P. 1—19.

31. Argirov O.K., Lin B., Ortwerth B.J. 2­ammonio­6­ (3­oxidopyridinium­1­yl)hexanoate (OP­lysine) is a newly identified advanced glycation end product in cataractous and aged human lenses // J. Biol. Chem. 2004. Vol. 279. N 8. P. 6487—6495.

32. Ahmed N., Thornalley P.J., Dawczynski J., Franke S., Strobel J., Stein G., Haik G.M. Methylglyoxal­derived hydroimidazolone advanced glycation end­products of human lens

33. proteins // Invest. Ophthalmol. Vis. Sci. 2003. Vol. 44. N 12. P. 5287—5292.

34. Derham B.K., Harding J.J. Effects of modifications of alpha­crystallin on its chaperone and other properties // Biochem. J. 2002. Vol. 364. Pt 3. P. 711—717.

35. Bhattacharyya J., Shipova E.V., Santhoshkumar P., Sharma K.K., Ortwerth B.J. Effect of a single AGE modification on the structure and chaperone activity of human alphaB­crystallin // Biochemistry. 2007. Vol. 46. N 50. P. 14682—14692.

36. Nagaraj R.H., Shipanova I.N., Faust F.M. Protein cross­linking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysine­lysine cross­link derived from methylglyoxal // J. Biol. Chem. 1996. Vol. 271. N 32. P. 19338—19345.

37. Nagaraj R.H., Oya­Ito T., Padayatti P.S., Kumar R., Mehta S., West K., Levison B., Sun J., Crabb J.W., Padival A.K. Enhancement of chaperone function of alpha­crystallin by methylglyoxal modification // Biochemistry. 2003. Vol. 42. N 36. P. 10746—10755.

38. Biswas A., Miller A., Oya­Ito T., Santhoshkumar P., Bhat M., Nagaraj R.H. Effect of site­directed mutagenesis of methylglyoxal­modifiable arginine residues on the structure and chaperone function of human lpha­crystallin // Biochemistry. 2006. Vol. 45. N 14. P. 4569—4577.

39. Kumar M.S., Reddy P.Y., Kumar P.A., Surolia I., Reddy G.B. Effect of dicarbonyl­induced browning on alpha­crystallin chaperone­like activity: physiological significance and caveats of in vitro aggregation assays // Biochem. J. 2004. Vol. 379. Pt. 2. P. 273—282.

40. Nahomi R.B., Oya­Ito T., Nagaraj R.H. The combined effect of acetylation and glycation on the chaperone and anti­apoptotic functions of human alpha­crystallin // Biochim. Biophys. Acta. 2013. Vol. 1832. N 1. P. 195—203.

41. Schalkwijk C.G., van Bezu J., van der Schors R.C., Uchida K., Stehouwer C.D., van Hinsbergh V.W. Heat­shock protein 27 is a major methylglyoxal­modified protein in endothelial cells // FEBS Lett. 2006. Vol. 580. N 6. P. 1565—1570.

42. van Heijst J.W., Niessen H.W., Musters R.J., van Hinsbergh V.W., Hoekman K., Schalkwijk C.G. Argpyrimidine­modified Heat shock protein 27 in human non­small cell lung cancer: a possible mechanism for evasion of apoptosis // Cancer Lett. 2006. Vol. 241. N 2. P. 309—319.

43. Sakamoto H., Mashima T., Yamamoto K., Tsuruo T. Modulation of heat­shock protein 27 (Hsp27) anti­apoptotic activity by methylglyoxal modification // J. Biol. Chem. 2002. Vol. 277. N 48. P. 45770—45775.

44. Padival A.K., Crabb J.W., Nagaraj R.H. Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells // FEBS Lett. 2003. Vol. 551. N 1—3. P. 113—118.


Рецензия

Для цитирования:


Гусев Н.Б., Судницына М.В. МАЛЫЕ БЕЛКИ ТЕПЛОВОГО ШОКА И ДИАБЕТ. Вестник Московского университета. Серия 16. Биология. 2015;(2):24-30.

For citation:


Sudnitsyna M.V., Gusev N.B. SMALL HEAT SHOCK PROTEINS AND DIABETES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(2):24-30. (In Russ.)

Просмотров: 520


ISSN 0137-0952 (Print)