МАЛЫЕ БЕЛКИ ТЕПЛОВОГО ШОКА И ДИАБЕТ
Аннотация
Об авторах
Николай Борисович ГусевРоссия
докт. биол. наук, чл.корр. РАН, проф., зав кафедрой биохимии
Мария Викторовна Судницына
Россия
канд. биол. наук, ассистент кафедры биохимии
Список литературы
1. Dedov I.I. Diabetes mellitusa dangerous treat to the mankind // Vestn. Ross. Akad. Med. Nauk. 2012. N 1. P. 7—13.
2. Brownlee M. Biochemistry and molecular cell biology of diabetic complications // Nature. 2001. Vol. 414. N 6865. P. 813—820.
3. Basha E., O’Neill H., Vierling E. Small heat shock proteins and alphacrystallins: dynamic proteins with flexible functions // Trends Biochem. Sci. 2012. Vol. 37. N 3. P. 106—117.
4. Mymrikov E.V., SeitNebi A.S., Gusev N.B. Large potentials of small heat shock proteins // Physiol. Rev. 2011. Vol. 91. N 4. P. 1123—1159.
5. Gruden G., Bruno G., Chaturvedi N., Burt D., Schalkwijk C., Pinach S., Stehouwer C.D., Witte D.R., Fuller J.H., Perin P.C., Group E.P.C.S. Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: a novel circulating marker for diabetic neuropathy // Diabetes. 2008. Vol. 57. N 7. P. 1966—1970.
6. Burt D., Bruno G., Chaturvedi N., Schalkwijk C., Stehouwer C.D., Witte D.R., Fuller J.H., Pinach S., Perin P.C., Gruden G. Antiheat shock protein 27 antibody levels and diabetes complications in the EURODIAB study // Diabetes Care. 2009. Vol. 32. N 7. P. 1269—1271.
7. Burut D.F., Borai A., Livingstone C., Ferns G. Serum heat shock protein 27 antigen and antibody levels appear to be related to the macrovascular complications associated with insulin resistance: a pilot study // Cell Stress Chaperones. 2010. Vol. 15. N 4. P. 379—386.
8. Tezel G., Wax M.B. The mechanisms of hsp27 antibodymediated apoptosis in retinal neuronal cells // J. Neurosci. 2000. Vol. 20. N 10. P. 3552—3562.
9. Pourhamidi K., Dahlin L.B., Boman K., Rolandsson O. Heat shock protein 27 is associated with better nerve function and fewer signs of neuropathy // Diabetologia. 2011. Vol. 54. N 12. P. 3143—3149.
10. Hooper P.L., Balogh G., Rivas E., Kavanagh K., Vigh L. The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes // Cell Stress Chaperones. 2014. Vol. 19. N 4. P. 447—464.
11. Reddy V.S., Kumar C.U., Raghu G., Reddy G.B. Expression and induction of small heat shock proteins in rat heart under chronic hyperglycemic conditions // Arch. Biochem. Biophys. 2014. Vol. 558. P. 1—9.
12. Reddy V.S., Raghu G., Reddy S.S., Pasupulati A.K., Suryanarayana P., Reddy G.B. Response of small heat shock proteins in diabetic rat retina // Invest. Ophthalmol. Vis. Sci. 2013. Vol. 54. N 12. P. 7674—7682.
13. Kumar P.A., Haseeb A., Suryanarayana P., Ehtesham N.Z., Reddy G.B. Elevated expression of lpha and alphaBcrystallins in streptozotocininduced diabetic rat //Arch. Biochem. Biophys. 2005. Vol. 444. N 2. P. 77—83.
14. Losiewicz M.K., Fort P.E. Diabetes impairs the neuroprotective properties of retinal alphacrystallins // Invest. Ophthalmol. Vis. Sci. 2011. Vol. 52. N 9. P. 5034—5042.
15. Mastrocola R., Barutta F., Pinach S., Bruno G., Perin P.C., Gruden G. Hippocampal heat shock protein 25 expression in streptozotocininduced diabetic mice // Neuroscience. 2012. Vol. 227. P. 154—162.
16. Akbar M.T., Lundberg A.M., Liu K., Vidyadaran S., Wells K.E., Dolatshad H., Wynn S., Wells D.J., Latchman D.S., de Belleroche J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against lpha_iinduced seizures and hippocampal cell death // J. Biol. Chem. 2003. Vol. 278. N 22. P. 19956—19965.
17. SanchezNino M.D., Sanz A.B., SanchezLopez E., RuizOrtega M., BenitoMartin A., Saleem M.A., Mathieson P.W., Mezzano S., Egido J., Ortiz A. HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II // Lab. Invest. 2012. Vol. 92. N 1. P. 32—45.
18. Dunlop M.E., Muggli E.E. Small heat shock protein alteration provides a mechanism to reduce mesangial cell contractility in diabetes and oxidative stress // Kidney Int. 2000. Vol. 57. N 2. P. 464—475.
19. Dai T., Natarajan R., Nast C.C., LaPage J., Chuang P., Sim J., Tong L., Chamberlin M., Wang S., Adler S.G. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton // Kidney Int. 2006. Vol. 69. N 5. P. 806—814.
20. McCarty M.F. Induction of heat shock proteins may combat insulin resistance // Med. Hypotheses. 2006. Vol. 66. N 3. P. 527—534.
21. Simar D., Jacques A., Caillaud C. Heat shock proteins induction reduces stress kinases activation, potentially improving insulin _lpha_ing in monocytes from obese subjects // Cell Stress Chaperones. 2012. Vol. 17. N 5. P. 615—621.
22. Arrigo A.P. Human small heat shock proteins: protein interactomes of homo and heterooligomeric complexes: an update // FEBS Lett. 2013. Vol. 587. N 13. P. 1959—1969.
23. Dai T., PatelChamberlin M., Natarajan R., Todorov I., Ma J., LaPage J., Phillips L., Nast C.C., Becerra D., Chuang P., Tong L., de Belleroche J., Wells D.J., Wang Y., Adler S.G. Heat shock protein 27 overexpression mitigates cytokineinduced islet apoptosis and streptozotocininduced diabetes // Endocrinology. 2009. Vol. 150. N 7. P. 3031—3039.
24. Korngut L., Ma C.H., Martinez J.A., Toth C.C., Guo G.F., Singh V., Woolf C.J., Zochodne D.W. Overexpression of human HSP27 protects sensory neurons from diabetes // Neurobiol. Dis. 2012. Vol. 47. N 3. P. 436—443.
25. Najemnikova E., Rodgers C.D., Locke M. Altered heat stress response following streptozotocininduced diabetes // Cell Stress Chaperones. 2007. Vol. 12. N 4. P. 342—352.
26. Sharma A.K., Bharti S., Ojha S., Bhatia J., Kumar N., Ray R., Kumari S., Arya D.S. Upregulation of PPARgamma, heat shock protein27 and 72 by naringin attenuates insulin resistance, betacell dysfunction, hepatic steatosis and kidney damage in a rat model of type 2 diabetes // Br. J. Nutr. 2011. Vol. 106. N 11. P. 1713—1723.
27. Shao B., Tang M., Li Z., Zhou R., Deng Y., Nie C., Yuan Z., Zhou L., Tang M., Tong A., Wei Y. Proteomics analysis of human umbilical vein endothelial cells treated with resveratrol // Amino Acids. 2012. Vol. 43. N 4. P. 1671—1678.
28. DiazChavez J., FonsecaSanchez M.A., ArechagaOcampo E., FloresPerez A., PalaciosRodriguez Y., DominguezGomez G., Marchat L.A., FuentesMera L., MendozaHernandez G., Gariglio P., LopezCamarillo C. Proteomic profiling reveals that resveratrol inhibits HSP27 expression and sensitizes breast cancer cells to doxorubicin therapy // PloS ONE. 2013. Vol. 8. N 5. e64378.
29. Sharma K.K., Santhoshkumar P. Lens aging: effects of crystallins // Biochim. Biophys. Acta. 2009. Vol. 1790. N 10. P. 1095—1108.
30. Groenen P.J., Merck K.B., de Jong W.W., Bloemendal H. Structure and modifications of the junior chaperone alphacrystallin. From lens transparency to molecular pathology // Eur. J. Biochem. 1994. Vol. 225. N 1. P. 1—19.
31. Argirov O.K., Lin B., Ortwerth B.J. 2ammonio6 (3oxidopyridinium1yl)hexanoate (OPlysine) is a newly identified advanced glycation end product in cataractous and aged human lenses // J. Biol. Chem. 2004. Vol. 279. N 8. P. 6487—6495.
32. Ahmed N., Thornalley P.J., Dawczynski J., Franke S., Strobel J., Stein G., Haik G.M. Methylglyoxalderived hydroimidazolone advanced glycation endproducts of human lens
33. proteins // Invest. Ophthalmol. Vis. Sci. 2003. Vol. 44. N 12. P. 5287—5292.
34. Derham B.K., Harding J.J. Effects of modifications of alphacrystallin on its chaperone and other properties // Biochem. J. 2002. Vol. 364. Pt 3. P. 711—717.
35. Bhattacharyya J., Shipova E.V., Santhoshkumar P., Sharma K.K., Ortwerth B.J. Effect of a single AGE modification on the structure and chaperone activity of human alphaBcrystallin // Biochemistry. 2007. Vol. 46. N 50. P. 14682—14692.
36. Nagaraj R.H., Shipanova I.N., Faust F.M. Protein crosslinking by the Maillard reaction. Isolation, characterization, and in vivo detection of a lysinelysine crosslink derived from methylglyoxal // J. Biol. Chem. 1996. Vol. 271. N 32. P. 19338—19345.
37. Nagaraj R.H., OyaIto T., Padayatti P.S., Kumar R., Mehta S., West K., Levison B., Sun J., Crabb J.W., Padival A.K. Enhancement of chaperone function of alphacrystallin by methylglyoxal modification // Biochemistry. 2003. Vol. 42. N 36. P. 10746—10755.
38. Biswas A., Miller A., OyaIto T., Santhoshkumar P., Bhat M., Nagaraj R.H. Effect of sitedirected mutagenesis of methylglyoxalmodifiable arginine residues on the structure and chaperone function of human lphacrystallin // Biochemistry. 2006. Vol. 45. N 14. P. 4569—4577.
39. Kumar M.S., Reddy P.Y., Kumar P.A., Surolia I., Reddy G.B. Effect of dicarbonylinduced browning on alphacrystallin chaperonelike activity: physiological significance and caveats of in vitro aggregation assays // Biochem. J. 2004. Vol. 379. Pt. 2. P. 273—282.
40. Nahomi R.B., OyaIto T., Nagaraj R.H. The combined effect of acetylation and glycation on the chaperone and antiapoptotic functions of human alphacrystallin // Biochim. Biophys. Acta. 2013. Vol. 1832. N 1. P. 195—203.
41. Schalkwijk C.G., van Bezu J., van der Schors R.C., Uchida K., Stehouwer C.D., van Hinsbergh V.W. Heatshock protein 27 is a major methylglyoxalmodified protein in endothelial cells // FEBS Lett. 2006. Vol. 580. N 6. P. 1565—1570.
42. van Heijst J.W., Niessen H.W., Musters R.J., van Hinsbergh V.W., Hoekman K., Schalkwijk C.G. Argpyrimidinemodified Heat shock protein 27 in human nonsmall cell lung cancer: a possible mechanism for evasion of apoptosis // Cancer Lett. 2006. Vol. 241. N 2. P. 309—319.
43. Sakamoto H., Mashima T., Yamamoto K., Tsuruo T. Modulation of heatshock protein 27 (Hsp27) antiapoptotic activity by methylglyoxal modification // J. Biol. Chem. 2002. Vol. 277. N 48. P. 45770—45775.
44. Padival A.K., Crabb J.W., Nagaraj R.H. Methylglyoxal modifies heat shock protein 27 in glomerular mesangial cells // FEBS Lett. 2003. Vol. 551. N 1—3. P. 113—118.
Рецензия
Для цитирования:
Гусев Н.Б., Судницына М.В. МАЛЫЕ БЕЛКИ ТЕПЛОВОГО ШОКА И ДИАБЕТ. Вестник Московского университета. Серия 16. Биология. 2015;(2):24-30.
For citation:
Sudnitsyna M.V., Gusev N.B. SMALL HEAT SHOCK PROTEINS AND DIABETES. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2015;(2):24-30. (In Russ.)