EVOLUTIONARY ROLE OF PHENOTYPIC PLASTICITY
Abstract
Phenotypic plasticity, i.e., the ability of a genotype to produce various phenotypes in response to changes in the environment, plays an important, although poorly understood and often underestimated, role in evolution. Both adaptive and non-adaptive phenotypic plasticity modulate the strength and direction of selection acting on population and can, depending on conditions, either accelerate or inhibit adaptation, divergence and speciation. Phenotypic plasticity also affects the direction of evolutionary change which can either coincide with the direction of plastic changes (genetic assimilation) or be the opposite (genetic compensation). A special case of phenotypic plasticity is phenotypic change of the host caused by changes in its symbiotic microbiota. In the current review, we discuss the main forms of phenotypic plasticity and the current data on their impact on the rate and direction of evolutionary change. Special attention is paid to the results of recent experimental work, including the long-term evolutionary experiment on Drosophila melanogaster which is being held at the Department of Evolutionary Biology,SchoolofBiology,MoscowStateUniversity.
About the Authors
A. V. MarkovRussian Federation
Department of Biological Evolution, School of Biology
S. B. Ivnitsky
Russian Federation
Department of Biological Evolution, School of Biology
References
1. Pfennig D.W., Wund M.A., Snell-Rood E.C., Cruickshank T., Schlichting C.D., Moczek A.P. Phenotypic plasticity’s impacts on diversification and speciation // Trends Ecol. Evol. 2010. Vol. 25. N 8. P. 459–467.
2. Scheiner S.M., Caplan R.L., Lyman R.F. The genetics of phenotypic plasticity. III. Genetic correlations and fluctuating asymmetries // J. Evolution. Biol. 1991. Vol. 4. N 1. P. 51–68.
3. Schmalhauzen I.I. Factors of evolution: The theory of stabilizing selection. Philadelphia: Blakiston Company, 1949. 327 p.
4. Waddington C.H. Genetic assimilation of acquired characters // Evolution. 1953. Vol. 7. N 2. P. 118–126.
5. Waddington C.H. Canalization of development and genetic assimilation of acquired characters // Nature. 1959. Vol. 183. N 4676. P. 1654–1655.
6. Иорданский Н.Н. Фенотипическая пластичность организмов и эволюция // Журн. общей биологии. 2009. Т. 70. № 1. С. 3–9.
7. Price T.D., Qvarnström A., Irwin D.E. The role of phenotypic plasticity in driving genetic evolution // Proc. Biol. Sci. 2003. Vol. 270. N 1523. P. 1433–1440.
8. West-Eberhard M.J. Developmental plasticity and the origin of species differences. Proc. Natl. Acad. Sci. U.S.A. 2005. Vol. 102. N 1. P. 6543–6549.
9. Fitzpatrick B.M. Underappreciated consequences of phenotypic plasticity for ecological speciation // Int. J. Ecol. Evol. 2012. Vol. 2012. Article ID 256017.
10. Sultan S.E. Development in context: the timely emergence of eco-devo // Trends Ecol. Evol. 2007. Vol. 22. N 11. P. 575–582.
11. Gilbert S.F., Epel D. Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sunderland, MA: Sinauer Associates Inc., 2008. 375 p.
12. Kawecki T.J., Lenski R.E., Ebert D., Hollis B., Olivieri I., Whitlock M.C. Experimental evolution // Trends Ecol. Evol. 2012. Vol. 27. N 10. P. 547–560.
13. Falconer D.S., Mackay T.F.C. Introducnion to quantitative genetics. London: Longman, 1996. 464 p.
14. Buskirk J., Relyea R. Selection for phenotypic plasticity in Rana sylvatica tadpoles // Biol. J. Linn. Soc. 1998. Vol. 65. N 3. P. 301–328.
15. Scheiner S.M., Callhan H.C. Measuring natural selection on phenotypic plasticity // Evolution. 1999. Vol. 53. N 6. P. 1704–1713.
16. Garland T., Jr, Kelly S.A. Phenotypic plasticity and experimental evolution // J. Exp. Biol. 2006. Vol. 209. N 12. P. 2344–2361.
17. Nonaka E., Brannstrom A., Svanback R. Assortative mating can limit the evolution of phenotypic plasticity // Evol. 2014. Vol.
18. N 6. P. 1057–1074. 18. Casanueva M.O., Burga A., Lehner B. Fitness trade-offs and environmentally induced mutation buffering in isogenic C. elegans // Science. 2012. Vol. 335. N 6064. P. 82–85.
19. Hayden E.J., Ferrada E., Wagner A. Cryptic genetic variation promotes rapid evolutionary adaptation in an RNA enzyme // Nature. 2011. Vol. 474. N 7349. P. 92–95.
20. Polak M. Developmental instability: causes and consequences. Oxford: Oxford Univ. Press, 2003. 488 p.
21. De Coster G., Van Dongen S., Malaki P., Muchane M., Alcántara-Exposito A., Matheve H., Lens L. Fluctuating asymmetry and environmental stress: understanding the role of trait history // PLoS ONE. 2013. Vol. 8. N 3. e57966.
22. Rutherford S.L., Lindquist S. HSP90 as a capacitor for morphological evolution // Nature. 1998. Vol. 396. N 6709. 336–342.
23. Queitsch C., Sangster T.A., Lindquist S. HSP90 as a capacitor of phenotypic variation // Nature. 2002. Vol. 417. N 6889. P. 618–624.
24. Rohner N., Jarosz D.F., Kowalko J.E., Yoshizawa M., Jeffery W.R., Borowsky R.L., Lindquist S., Tabin C.J. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish // Science. 2013. Vol. 342. N 6164. P. 1372–1375.
25. DeWitt T.J., Scheiner S.M. Phenotypic variation from single genotypes: a primer // Phenotypic plasticity: functional and conceptual approaches / Eds. T.J. DeWitt and S.M. Scheiner. USA, New York, NY: Oxford Univ. Press, 2004. P. 1–9.
26. Suzuki Y., Nijhout H.F. Evolution of a polyphenism by genetic accommodation // Science. 2006. Vol. 311. N 5761. P. 650–652.
27. Scheiner S.M., Holt R.D. The genetics of phenotypic plasticity. X. Variation versus uncertainty // Ecol. Evol. 2012. Vol. 2. N 4. P. 751–767.
28. Sultan S., Spencer H.G. Metapopulation structure favors plasticity over local adaptation // Am. Nat. 2002. Vol. 160. N 2. P. 271–283.
29. Crispo E. The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity // Evolution. 2007. Vol. 61. N 11. P. 2469–2479.
30. Bateman K.G. The genetic assimilation of the dumpy phenocopy // J. Genet. 1959. Vol. 56. N 3. P. 341–351.
31. Masel J. Genetic assimilation can occur in the absence of selection for the assimilating phenotype, suggesting a role for the canalization heuristic // J. Evol. Biol. 2004. Vol. 17. N 5. P. 1106–1110.
32. Phillips P.C. Waiting for a compensatory mutation: phase zero of the shifting-balance process // Genet. Res. 1996. Vol. 67. N 3. P. 271–283
33. West-Eberhard M.J. Alternative adaptations, speciation, and phylogeny // Proc. Natl. Acad. Sci. U. S. A. 1986. Vol. 83. N 5. P. 1388–1392.
34. Matsuda R. The evolutionary process in talitrid amphipods and salamanders in changing environments, with a discussion of “genetic assimilation” and some other evolutionary concepts // Can. J. Zool. 1982. Vol. 60. N 5. P. 733–749.
35. Smith T.B., Skúlason S. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds // Annu. Rev. Ecol. Syst. 1996. Vol. 27. P. 111–133.
36. Sharon G., Segal D., Ringo J.M., Hefetz A., ZilberRosenberg I., Rosenberg E. Commensal bacteria play a role in mating preference of Drosophila melanogaster // Proc. Nat. Acad. Sci. U. S. A. 2010. Vol. 107. N 46. P. 20051–20056.
37. Markov A.V., Naimark E.B., Yakovleva E.U. Temporal scaling of age-dependent mortality: Dynamics of aging in Caenorhabditis elegans is easy to speed up or slow down, but its overall trajectory is stable // Biochemistry (Mosc.). 2016. Vol. 81. N 8. P. 906–911.
38. Siegal M.L., Bergman A. Waddington’s canalization revisited: developmental stability and evolution // Proc. Nat. Acad. Sci. U. S. A. 2002. Vol. 99. N 16. P. 10528–10532.
39. Williams G.C. Pleiotropy, natural selection, and the evolution of senescence // Evolution. 1957. Vol. 11. N 4. P. 398–411.
40. Hamilton W.D. The moulding of senescence by natural selection // J. Theor. Biol. 1966. Vol. 12. N 1. P. 12–45.
41. Williams P.D., Day T., Fletcher Q., Rowe L. The shaping of senescence in the wild // Trends Ecol. Evol. 2006. Vol. 21. N 8. P. 458–463.
42. Chen H., Maklakov A.A. Longer life span evolves under high rates of condition-dependent mortality // Curr. Biol. 2012. Vol. 22. N 22. P. 2140–2143.
43. Shishkin M.A. Development and lessons of // Russ. J. Dev. Biol. 2006. Vol. 37. N 3. P. 146–162.
44. Раутиан А.С. О природе генотипа и наследственности // Журн. общ. биол. 1993. Т. 54. № 2. С. 131–148.
45. Гродницкий Д.Л. Эпигенетическая теория эволюции как возможная основа нового эволюционного синтеза // Журн. общ. биол. 2001. Т. 62. № 2. С. 99–109.
46. Шишкин М.А. Эволюция как эпигенетический процесс // Современная палеонтология Т. 2. / Под ред. В.В. Меннера и В.П. Макридина. М.: Недра, 1988. С. 142–169.
47. Марков А.В., Наймарк Е.Б. Эволюция. Классические идеи в свете новых открытий. М.: Corpus, 2014. 656 с.
48. Minelli A., Fusco G. Developmental plasticity and the evolution of animal complex life cycles // Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2010. Vol. 365. N 1540. P. 631–640.
49. Марков А.В., Ивницкий С.Б., Корнилова М.Б., Наймарк Е.Б., Широкова Н.Г., Перфильева К.С. Материнский эффект маскирует адаптацию к неблагоприятным условиям и затрудняет дивергенцию у Drosophila melanogaster // Журн. общ. биол. 2015. Т. 76. №6. С. 429–437
50. Grether G.F., 2005. Environmental change, phenotypic plasticity, and genetic compensation // Am. Nat. Vol. 166. N 4. P. E115–E123.
51. Reznick D.N., Shaw F.H., Rodd F.H., Shaw R.G. Evaluation of the rate of evolution in natural populations of guppies (Poecilia reticulata) // Science. 1997. Vol. 275. N 5308. P. 1934–1937.
52. Reznick D.N., Bryant M.J., Roff D., Ghalambor C.K., Ghalambor D.E. Effect of extrinsic mortality on the evolution of senescence in guppies // Nature. 2004. Vol. 431. N 7012. P. 1095–1099.
53. Ghalambor C.K., Hoke K.L., Ruell E.W., Fischer E.K., Reznick D.N., Hughes K.A. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature // Nature. 2015. Vol. 525. N 7569. P. 372–375.
54. Zilber-Rosenberg I., Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution // FEMS Microbiol. Rev. 2008. Vol. 32. N 5. P. 723–735.
55. Shin S.C., Kim S.H., You H., Kim B., Kim A.C., Lee K.A., Yoon J.H., Ryu J.H., Lee W.J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling // Science. 2011. Vol. 334. N 6056. P. 670–674.
56. Blum J.E., Fischer C.N., Miles J., Handelsman J. Frequent replenishment sustains the beneficial microbiome of Drosophila melanogaster // MBio. 2013. Vol. 4. N 6. e00860-13.
57. Erkosar B., Storelli G., Defaye A., Leulier F. Hostintestinal microbiota mutualism: “learning on the fly” // Cell Host Microbe. 2013. Vol. 13. N 1. P. 8–14.
58. Arbuthnott D., Rundle H.D. Misalignment of natural and sexual selection among divergently adapted Drosophila melanogaster populations // Anim. Behav. 2014. Vol. 87. P. 45–51.
59. Дмитриева А.С., Ивницкий С.Б., Марков А.В. Адаптация Drosophila melanogaster к неблагоприятному кормовому субстрату сопровождается расширением трофической ниши // Журн. общ. биологии. 2016. Т. 77. № 4. С. 249–261.
60. Bordenstein S.R., Theis K.R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes // PLoS Biol. 2015. Vol. 13. N 8. e1002226.
61. Aplin L.M., Farine D.R., Morand-Ferron J., Cockburn A., Thornton A., Sheldon B.C. Experimentally induced innovations lead to persistent culture via conformity in wild birds // Nature. 2015. Vol. 518. N 7540. P. 538–541.
62. Marshall D.J., Uller T. When is a maternal effect adaptive? // Oikos. 2007. Vol. 116. N 12. P. 1957–1963.
63. Dias B.G., Ressler K.J. Parental olfactory experience influences behavior and neural structure in subsequent generations // Nat. Neurosci. 2014. Vol. 17. N 1. P. 89–96.
64. Buffington S.A., Di Prisco G.V., Auchtung T.A., Ajami N.J., Petrosino J.F., Costa-Mattioli M. Microbial reconstitution reverses maternal diet-Induced social and synaptic deficits in offspring // Cell. 2016. Vol. 165. N 7. P. 1762–1775.
65. Krakowiak P., Walker C.K., Bremer A.A., Baker A.S., Ozonoff S., Hansen R.L., Hertz-Picciotto I. Maternal Metabolic Conditions and Risk for Autism and Other Neurodevelopmental Disorders // Pediatrics. 2012. Vol. 129. N 5. P. e1121–e1128.
Review
For citations:
Markov A.V., Ivnitsky S.B. EVOLUTIONARY ROLE OF PHENOTYPIC PLASTICITY. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016;(4):3-11. (In Russ.)