Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

НЕПОЛНОЦЕННОЕ ПИТАНИЕ В РАННЕЙ ЖИЗНИ И РИСК РАЗВИТИЯ ДИАБЕТА 2-ГО ТИПА: ТЕОРЕТИЧЕСКИЙ БАЗИС И ЭПИДЕМИОЛОГИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА

Полный текст:

Аннотация

Получены многочисленные экспериментальные и эпидемиологические доказательства того, что недостаточное питание во время раннего развития может влиять на риск развития метаболических патологий во взрослой жизни, включая сахарный диабет 2-го типа (СД2Т). Большая часть эпидемиологических доказательств подобной связи получена в квазиэкспериментальных исследованиях (“естественных экспериментах”), реализованных в популяциях разных стран мира. В этих исследованиях показано, что воздействие голода в течение пренатального и/или раннего постнатального развития связано с повышенным риском развития СД2Т во взрослой жизни. В качестве основного механизма, за счёт которого реализуется связь между воздействием голода в ранней жизни и повышенным риском СД2Т у взрослых людей, рассматривается эпигенетическая регуляция активности генов. Предполагается, что пренатальное воздействие голода может вызывать устойчивые эпигенетические изменения, которые имеют адаптивное значение на протяжении раннего постнатального развития, но предрасполагают к метаболическим нарушениям, включая СД2Т, в дальнейшей жизни. В представленном обзоре обобщены и обсуждены данные квазиэкспериментальных исследований, свидетельствующие о возможности раннего программирования риска СД2Т.

Об авторах

О. Г. Забуга
ГУ “Институт геронтологии им. Д.Ф. Чеботарёва” НАМНУ
Украина

Украина, 04114, г. Киев, ул. Вышгородская, д. 67

канд. биол. наук, мл. науч. сотр. лаборатории эпигенетики ГУ “Институт геронтологии им. Д.Ф. Чеботарева НАМН Украины”, Киев. Тел.: + 38 (044) 431-05-58



А. М. Вайсерман
ГУ “Институт геронтологии им. Д.Ф. Чеботарёва” НАМНУ
Украина

Украина, 04114, г. Киев, ул. Вышгородская, д. 67

докт. мед. наук, зав. лабораторией эпигенетики ГУ “Институт геронтологии им. Д.Ф. Чеботарева НАМН Украины”, Киев. Тел.: + 38 (044) 431-05-58



Список литературы

1. Wilmot E., Idris I. Early onset type 2 diabetes: risk factors, clinical impact and management // Ther. Adv. Chronic. Dis. 2014. Vol. 5. N 6. P. 234–244.

2. Jaacks L.M., Siegel K.R., Gujral U.P., Narayan K.M. Type 2 diabetes: A 21st century epidemic // Best Pract. Res. Clin. Endocrinol. Metab. 2016. Vol. 30. N 3. P. 331–343.

3. Nielsen J.H., Haase T.N., Jaksch C., et al. Impact of fetal and neonatal environment on beta cell function and development of diabetes // Acta Obstet. Gynecol. Scand. 2014. Vol. 93. N 11. P. 1109–1122.

4. Dabelea D., Hanson R.L., Lindsay R.S., Pettitt D.J., Imperatore G., Gabir M.M., Roumain J., Bennett P.H., Knowler W.C. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships // Diabetes. 2000. Vol. 49. N 12. P. 2208–2211.

5. Eriksson J.G. Developmental origins of health and disease – from a small body size at birth to epigenetics // Ann. Med. 2016. Vol. 48. N 6. P. 456–467.

6. Kim J.B. Dynamic cross talk between metabolic organs in obesity and metabolic diseases // Exp. Mol. Med. 2016. Vol. 48. N 3. e214.

7. Nettle D., Bateson M. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? // Proc. Biol. Sci. 2015. Vol. 282. N 1812. Article ID 20151005.

8. Hales C.N., Barker D.J. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. 1992 // Int. J. Epidemiol. 2013. Vol. 42. N 5. P. 1215–1222.

9. Thorn S.R., Rozance P.J., Brown L.D., Hay W.W. Jr. The intrauterine growth restriction phenotype: fetal adaptations and potential implications for later life insulin resistance and diabetes // Semin. Reprod. Med. 2011. Vol. 29. N 3. P. 225–236.

10. Carolan-Olah M., Duarte-Gardea M., Lechuga J. A critical review: early life nutrition and prenatal programming for adult disease // J. Clin. Nurs. 2015. Vol. 24. N 23–24. P. 3716–3729.

11. Tarry-Adkins J.L., Ozanne S.E. Nutrition in early life and age-associated diseases // Ageing Res. Rev. 2016. pii: S1568-1637(16)30179-9.

12. Whincup P.H., Kaye S.J., Owen C.G., et al. Birth weight and risk of type 2 diabetes: a systematic review // J. Am. Med. Assoc. 2008. Vol. 300. N 24. P. 2886–2897.

13. Kensara O.A., Wootton S.A., Phillips D.I., Patel M., Jackson A.A., Elia M. Hertfordshire Study Group. Fetal programming of body composition: Relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen // Am. J. Clin. Nutr. 2005. Vol. 82. N 5. P. 980–987.

14. Morrison K.M., Ramsingh L., Gunn E., Streiner D., Van Lieshout R., Boyle M., Gerstein H., Schmidt L., Saigal S. Cardiometabolic health in adults born premature with extremely low birth weight // Pediatrics. 2016. Vol. 138. N 4. e20160515.

15. Stirrat L.I., Reynolds R.M. The effect of fetal growth and nutrient stresses on steroid pathways // J. Steroid. Biochem. Mol. Biol. 2016. Vol. 160. P. 214–220.

16. Frankel S., Elwood P., Sweetnam P., Yarnell J., Smith G.D. Birthweight, body-mass index in middle age, and incident coronary heart disease // Lancet. 1996. Vol. 348. N 9040. P. 1478–1480.

17. Harder T., Rodekamp E., Schellong K., Dudenhau -sen J.W., Plagemann A. Birth weight and subsequent risk of type 2 diabetes:a meta-analysis // Am. J. Epidemiol. 2007. Vol. 165. N 8. P. 849–857.

18. Dulloo A.G. Thrifty energy metabolism in catch-up growth trajectories to insulin and leptin resistance // Best Pract. Res. Clin. Endocrinol. Metab. 2008. Vol. 22. N 1. P. 155–171.

19. Cho W.K., Suh B.K. Catch-up growth and catch-up fat in children born small for gestational age // Korean J. Pediatr. 2016. Vol. 59. N 1. P. 1–7.

20. Ong T.P., Ozanne S.E. Developmental programming of type 2 diabetes: early nutrition and epigenetic mechanisms // Curr. Opin. Clin. Nutr. Metab. Care. 2015. Vol. 18. N 4. P. 354– 360.

21. Paluch B.E., Naqash A.R., Brumberger Z., Nemeth M.J., Griffiths E.A. Epigenetics: A primer for clinicians // Blood Rev. 2016. Vol. 30. N 4. P. 285–295.

22. van Dijk S.J., Tellam R.L., Morrison J.L., Muhlhausler B.S., Molloy P.L. Recent developments on the role of epigenetics in obesity and metabolic disease // Clin. Epigenetics. 2015. Vol. 7. P. 66.

23. Vaiserman A. Epidemiologic evidence for association between adverse environmental exposures in early life and epigenetic variation: a potential link to disease susceptibility? // Clin. Epigenetics. 2015. Vol. 7. P. 96.

24. Geraghty A.A., Lindsay K.L., Alberdi G., McAuliffe F.M., Gibney E.R. Nutrition during pregnancy impacts offspring’s epigenetic status – evidence from human and animal studies // Nutr. Metab. Insights. 2016. Vol. 8. N 1. P. 41–47.

25. Alam F., Islam M.A., Gan S.H., Mohamed M., Sasongko T.H. DNA methylation: an epigenetic insight into type 2 diabetes mellitus // Curr. Pharm. Des. 2016. Vol. 22. N 28. P. 4398–4419.

26. Kwak S.H., Park K.S. Recent progress in genetic and epigenetic research on type 2 diabetes // Exp. Mol. Med. 2016. Vol. 48. N 3. e220.

27. Porta M., ed. A dictionary of epidemiology (5th Edition). NY: Oxford Univ. Press, 2008. 320 p.

28. Heijmans B.T., Tobi E.W., Lumey L.H., Slagboom P.E. The epigenome: archive of the prenatal environment // Epigenetics. 2009. Vol. 4. N 8. P. 526–531.

29. Lumey L.H., Stein A.D., Susser E. Prenatal famine and adult health // Annu. Rev. Public Health. 2011. Vol. 32. P. 237–262.

30. Roseboom T.J., Painter R.C., van Abeelen A.F., Veenendaal M.V., de Rooij S.R. Hungry in the womb: what are the consequences? Lessons from the Dutch famine // Maturitas. 2011. Vol. 70. N 2. P. 141–145.

31. Heijmans B.T., Tobi E.W., Stein A.D., Putter H., Blauw G.J., Susser E.S., Slagboom, P.E., Lumey L.H. Persistent epigenetic differences associated with prenatal exposure to famine in humans // Proc. Natl Acad. Sci. U. S. A. 2008. Vol. 105. N 44. P. 17046–17049.

32. van Abeelen A.F., Elias S.G., Bossuyt P.M., Grobbee D.E., van der Schouw Y.T., Roseboom T.J., Uiterwaal C.S. Famine exposure in the young and the risk of type 2 diabetes in adulthood // Diabetes. 2012. Vol. 61. N 9. P. 2255–2260.

33. Portrait F., Teeuwiszen E., Deeg D. Early life undernutrition and chronic diseases at older ages: the effects of the Dutch famine on cardiovascular diseases and diabetes // Soc. Sci. Med. 2011. Vol. 73. N 5. P. 711–718.

34. Lumey L.H., Terry M.B., Delgado-Cruzata L., Liao Y., Wang Q., Susser E., McKeague I., Santella R.M. Adult global DNA methylation in relation to pre-natal nutrition // Int. J. Epidemiol. 2012. Vol. 41. N 1. P. 116–123.

35. Tobi E.W., Lumey L.H., Talens R.P., Kremer D., Putter H., Stein A.D., Slagboom P.E., Heijmans B.T. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific // Hum. Mol. Genet. 2009. Vol. 18. N 21. P. 4046–4053.

36. Thurner S., Klimek P., Szell M., Duftschmid G., Endel G., Kautzky-Willer A., Kasper D.C. Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110. N 12. P. 4703–4707.

37. Klitz W., Niklasson B. Viral underpinning to the Austrian record of type 2 diabetes? // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110. N 30. P. E2750–E2750.

38. Thurner S., Klimek P., Szell M., Duftschmid G., Endel G., Kautzky-Willer A., Kasper D.C. Reply to Klitz and Niklasson: Can viral infections explain the cross-sectional Austrian diabetes data? // Proc. Natl. Acad. Sci. U.S.A. 2013. Vol. 110. N 30. E2751.

39. Lumey L.H., Khalangot M.D., Vaiserman A.M. Association between type 2 diabetes and prenatal exposure to the Ukraine famine of 1932-33: a retrospective cohort study // Lancet Diabetes Endocrinol. 2015. Vol. 3. N 10. P. 787–794.

40. Sparén P., Vågerö D., Shestov D.B., Plavinskaja S., Parfenova N., Hoptiar V., Paturot D., Galanti M.R. Long term mortality after severe starvation during the siege of Leningrad: prospective cohort study // Brit. Med. J. 2004. Vol. 328. N 7430. P. 11.

41. Stanner S.A., Bulmer K., Andrès C., Lantseva O.E., Borodina V., Poteen V.V., Yudkin J.S. Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study // Brit. Med. J. 1997. Vol. 315. N 7119. P. 1342–1348.

42. Stanner S.A., Yudkin J.S. Fetal programming and the Leningrad Siege study // Twin Res. 2001. Vol. 4. N 5. P. 287–292.

43. Bateson P. Fetal experience and good adult design // Int. J. Epidemiol. 2001. Vol. 30. N 5. P. 928–934.

44. Khoroshinina L.P., Zhavoronkova N.V. Starving in childhood and diabetes mellitus in elderly age // Adv. Gerontol. 2008. Vol. 21. N 4. P. 684–687.

45. Khoroshinina L.P. Peculiarities of somatic diseases in people of middle and old age survived Leningrad siege at childhood // Adv. Gerontol. 2004. Vol. 14. P. 55–65.

46. Koupil I., Shestov D.B., Sparén P., Plavinskaja S., Parfenova N., Vågerö D. Blood pressure, hypertension and mortality from circulatory disease in men and women who survived the siege of Leningrad // Eur. J. Epidemiol. 2007. Vol. 22. N 4. P. 223–234.

47. Jowett A.J. The demographic responses to famine: the case of China 1958-61 // GeoJournal. 1991. Vol. 23. N 2. P. 135–146.

48. Li C., Lumey L.H. Exposure to the Chinese famine of 1959-61 in early life and current health conditions: a systematic review and meta-analysis // Lancet. 2016. Vol. 388. N 1. P. S63.

49. Li Y., He Y., Qi L., Jaddoe V.W., Feskens E.J., Yang X., Ma G., Hu F.B. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood // Diabetes. 2010. Vol. 59. N 10. P. 2400–2406.

50. Wang N., Wang X., Han B., Li Q., Chen Y., Zhu C., Chen Y., Xia F., Cang Z., Zhu C., et al. Is exposure to famine in childhood and economic development in adulthood associated with diabetes? // J. Clin. Endocrinol. Metab. 2015. Vol. 100. N 12. P. 4514–4523.

51. Wang N., Cheng J., Han B., Li Q., Chen Y., Xia F., Jiang B., Jensen M.D., Lu Y. Exposure to severe famine in the prenatal or postnatal period and the development of diabetes in adulthood: an observational study // Diabetologia. 2017. Vol. 60. N 2. P. 262–269.

52. Wang J., Li Y., Han X., et al. Exposure to the Chinese Famine in childhood increases type 2 diabetes risk in adults // J. Nutr. 2016. Vol. 146. N 11. P. 2289–2295.

53. Li J., Liu S., Li S., et al. Prenatal exposure to famine and the development of hyperglycemia and type 2 diabetes in adulthood across consecutive generations: a populationbased cohort study of families in Suihua, China // Am. J. Clin. Nutr. 2017. Vol. 105. N 1. P. 221–227.

54. Miller J.P. Medical relief in the Nigerian civil war // Lancet. 1970. Vol. 760. N 1. P. 1330–1334.

55. Hult M., Tornhammar P., Ueda P., Chima C., Bonamy A.K., Ozumba B., Norman M. Hypertension, diabetes and overweight: looming legacies of the Biafran famine // PLoS One. 2010. Vol. 5. N 10. e13582.

56. Bercovich E., Keinan-Boker L., Shasha S.M. Longterm health effects in adults born during the Holocaust // Isr. Med. Assoc. J. 2014. Vol. 16. N 4. P. 203–207.

57. Keinan-Boker L., Shasha-Lavsky H., Eilat-Zanani S., Edri-Shur A., Shasha S.M. Chronic health conditions in Jewish Holocaust survivors born during World War II // Isr. Med. Assoc. J. 2015. Vol. 17. N 4. P. 206–212.

58. Watson P.E., McDonald B.W. Seasonal variation of nutrient intake in pregnancy: effects on infant measures and possible influence on diseases related to season of birth // Eur. J. Clin Nutr. 2007. Vol. 61. N 11. P. 1271–1280.

59. Flouris A.D., Spiropoulos Y., Sakellariou G.J., Koutedakis Y. Effect of seasonal programming on fetal development and longevity: links with environmental temperature // Am. J. Hum. Biol. 2009. Vol. 21. N 2. P. 214–216.

60. Finch C.E., Crimmins E.M. Inflammatory exposure and historical changes in human life- spans // Science. 2004. Vol. 305. N 5691. P. 1736–1739.

61. Lowell W.E., Davis G.E. Jr. The light of life: evidence that the sun modulates human lifespan // Med. Hypotheses. 2008. Vol. 70. N 3. P. 501–507.

62. Smith A.D., Crippa A., Woodcoc, J., Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies // Diabetologia. 2016. Vol. 59. N 12. P. 2527–2545.

63. Vaiserman A.M. Early-life exposure to substance abuse and risk of type 2 diabetes in adulthood // Curr. Diab. Rep. 2015. Vol. 15. N 8. Article 48.

64. Chodick G., Flash S., Deoitch Y., Shalev V. Seasonality in birth weight: review of global patterns and potential causes // Hum. Biol. 2009. Vol. 81. N 4. P. 463–477.

65. Banegas J.R., Rodríguez-Artalejo F., de la Cruz J.J., Graciani A., Villar F., del Rey-Calero J. Adult men born in spring have lower blood pressure // J. Hypertens. 2000. Vol. 18. N 12. P. 1763–1766.

66. Phillips D.I., Young J.B. Birth weight, climate at birth and the risk of obesity in adult life // Int. J. Obes. Relat. Metab. Disord. 2000. Vol. 24. N 3. P. 281–287.

67. Wattie N., Ardern C.I., Baker J. Season of birth and prevalence of overweight and obesity in Canada // Early Hum. Dev. 2008. Vol. 84. N 8. P. 539–547.

68. Lawlor D.A., Davey-Smith G., Mitchell R., Ebrahim S. Temperature at birth, coronary heart disease, and insulin resistance: cross sectional analyses of the British women’s heart and health study // Heart. 2004. Vol. 90. N 4. P. 381–388.

69. Laron Z., Lewy H., Wilderman I., Casu A., Willis J., Redondo M.J., Libman I., White N., Craig M. Seasonality of month of birth of children and adolescents with type 1 diabetes mellitus in homogenous and heterogeneous populations // Isr. Med. Assoc. J. 2005. Vol. 7. N 6. P. 381–384.

70. Grover V., Lipton R.B., Sclove S.L. Seasonality of month of birth among African American children with diabetes mellitus in the City of Chicago // J. Pediatr. Endocrinol. Metab. 2004. Vol. 17. N 3. P. 289–296.

71. Jongbloet P.H., van Soestbergen M., van der Veen E.A. Month-of-birth distribution of diabetics and ovopathy: a new aetiological view // Diabetes Res. 1988. Vol. 9. N 2. P. 51–58.

72. Vaiserman A.M., Khalangot M.D., Carstensen B., Tronko M.D., Kravchenko V.I., Voitenko V.P., Mechova L.V., Koshel N.M., Grigoriev P.E. Seasonality of birth in adult type 2 diabetic patients in three Ukrainian regions // Diabetologia. 2009. Vol. 52. N 12. P. 2665–2667.

73. Vaiserman A.M., Khalangot M.D. Similar seasonality of birth in type 1 and type 2 diabetes patients: A sign for common etiology? // Med. Hypotheses. 2008. Vol. 71. N 4. P. 604–605.

74. Jensen C.B., Zimmermann E., Gamborg M., Heitmann B.L., Baker J.L., Vaag A., S rensen T.I. No evidence of seasonality of birth in adult type 2 diabetes in Denmark // Diabetologia. 2015. Vol. 58. N 9. P. 2045–2050.

75. Lockett G.A., Soto-Ram rez N., Ray M.A., Everson T.M., Xu C.J., Patil V.K., Terry, W., Kaushal A., Rezwan F.I., Ewart S.L., et al. Association of season of birth with DNA methylation and allergic disease // Allergy. 2016. Vol. 71. N 9. P. 1314–1324.

76. Dugué P.A., Geurts Y.M., Milne R.L., Lockett G.A., Zhang H., Karmaus W., Holloway J.W. Is there an association between season of birth and blood DNA methylation in adulthood? // Allergy. 2016. Vol. 71. N 10. P. 1501–1504.

77. Desiderio A., Spinelli R., Ciccarelli M., Nigro C., Miele C., Beguinot F., Raciti G.A. Epigenetics: spotlight on type 2 diabetes and obesity // J. Endocrinol. Invest. 2016. Vol. 39. N 10. P. 1095–1103.

78. Sterns J.D., Smith C.B., Steele J.R., Stevenson K.L., Gallicano G.I. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition // Front. Cell Dev. Biol. 2014. Vol. 2. P. 15.

79. Gillman M.W. Prenatal famine and developmental origins of type 2 diabetes // Lancet Diabetes Endocrinol. 2015. Vol. 3. N 10. P. 751–752.

80. Vaiserman A.M., Pasyukova E.G. Epigenetic drugs: a novel anti-aging strategy? // Front. Genet. 2012. Vol. 3. P. 224.


Для цитирования:


Забуга О.Г., Вайсерман А.М. НЕПОЛНОЦЕННОЕ ПИТАНИЕ В РАННЕЙ ЖИЗНИ И РИСК РАЗВИТИЯ ДИАБЕТА 2-ГО ТИПА: ТЕОРЕТИЧЕСКИЙ БАЗИС И ЭПИДЕМИОЛОГИЧЕСКИЕ ДОКАЗАТЕЛЬСТВА. Вестник Московского университета. Серия 16. Биология. 2017;72(2):47-57.

For citation:


Zabuga O.G., Vaiserman A.M. MALNUTRITION IN EARLY LIFE AND RISK OF TYPE 2 DIABETES: THEORETICAL BASIS AND EPIDEMIOLOGICAL EVIDENCE. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2017;72(2):47-57. (In Russ.)

Просмотров: 79


ISSN 0137-0952 (Print)