Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

INFLUENCE OF INTERIONIC INTERACTIONS ON FUNCTIONAL STATE OF KV CHANNELS AND ON BLOCKER BINDING

https://doi.org/10.1234/XXXX-XXXX-2012-4-17-23

Abstract

In this study we estimate the ionic current of voltage-gated potassium channel KcsA (all-atom model) on 100 ns trajectories and interactions of mammalian voltage-gated channel Kv1.2 with neurotoxin. Supercomputer “Lomonosov” has been used. Free energy profiles for one and three potassium ions in the KcsA pore were calculated. At physiological conditions ions pass through the channel pore cooperatively by files with three ions. The study of the influence of interionic interactions on the current and the influence of ionic concentration on the blocker binding were done.

About the Authors

K. V. Shaitan

Russian Federation


O. S. Sokolova

Russian Federation


A. K. Shaitan

Russian Federation


M. A. Kasimova

Russian Federation


V. N. Novoseletsky

Russian Federation


M. P. Kirpichnikov

Russian Federation


References

1. Domene C. Molecular dynamics simulations of potassium channels // Central European J. of Chemistry 2007. Vol. 5. P. 635—671.

2. Jensen M., Borhani D., Lindorff-Larsen K., Maragakis P., Jogini V., Eastwood M., Dror R., Shaw D. Principles of conduction and hydrophobic gating in K+ channels // Proceedings of the National Academy of Sciences. 2010. Vol. 107. P. 5833—5838.

3. Berneche S., Roux B. Energetics of ion conduction through the K+ channel // Nature. 2001. Vol. 414. P. 73—77.

4. Khalili-Araghi F., Tajkhorshid E., Schulten K. Dynamics of K+ Ion Conduction through Kv1.2 // Biophys. J. 2006. Vol. 91. P. L72—L74.

5. Соколова О.С., Шайтан К.В., Гризель А.В., Попинако А.В., Карлова М.Г., Кирпичников М.П. Трехмерная структура потенциал-зависимого человеческого канала Kv10.2 по данным электронной микроскопии макромолекул и молекулярного моделирования // Биоорган. химия. 2012. Т. 38, № 2. С. 1—8.

6. Boiteux C., Kraszewski S., Ramseyer C., Girardet C. Ion conductance vs. pore gating and selectivity in KcsA channel: Modeling achievements and perspectives // J. Molecular Mod. 2007. Vol. 13. P. 699—713.

7. Cuello L., Jogini V., Cortes M., Perozo E. Structural mechanism of C-type inactivation in K+ channels // Nature. 2010. Vol. 466. P. 203—208.

8. Smart O., Neduvelil J., Wang X., Wallace B., Sansom M. HOLE: A program for the analysis of the pore dimensions of ion channel structural models // J. of Molecular Graphics. 1996. Vol. 14. P. 354—360.

9. Duan Y., Wu C., Chowdhury S., Lee M., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T., Caldwell J., Wang J., Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations // J. Comput. Chem. 2003. Vol. 24. P. 1999—2012.

10. Miloshevsky G., Jordan P. Conformational Changes in the Selectivity Filter of the Open-State KcsA Channel: An Energy Minimization Study // Biophys. J. 2008. Vol. 95. P. 3239—3251.

11. Berger O., Edholm O., Jдhnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature // Biophys. J. 1997. Vol. 72. P. 2002—2013.

12. Wolf M.G., Hoefling M., Aponte-Santamarнa C., Grubmьller H., Groenhof G. g_membed: Efficient insertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation // J. Comput. Chem. 2010. Vol. 31. P. 2169—2174.

13. Case D., Cheatham T., Darden T., Gohlke H., Luo R., Merz K., Onufriev A., Simmerling C., Wang B., Woods R. The Amber biomolecular simulation programs // J. Comput. Chem. 2005. Vol. 26. P. 1668—1688.

14. Phillips J., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., Chipot C., Skeel R., Kalй L., Schulten K. Scalable molecular dynamics with NAMD // J. Comput. Chem. 2005. Vol. 26. P. 1781—1802.

15. Karlova M.G., Piscshalnikova A.V., Ramonova A.A., Moisenovich M.M., Sokolova O.S., Shaitan K.V. In vitro fluorescence assay to study the folding of Kv ion channels // Biophysics (Moscow). 2011. Vol. 56. N 2. P. 272—279.

16. Long S.B., Campbell E.B., Mackinnon R. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel // Science. 2005. Vol. 309. P. 897—903.

17. Krezel A.M., Kasibhatla C., Hidalgo P., MacKinnon R., Wagner G. Solution structure of the potassium channel inhibitor agitoxin 2: Caliper for probing channel geometry // Protein Sci. 1995. Vol. 4. P. 1478—1489.

18. Maestro, version 9.5, Schrцdinger L.L.C. New York, 2007; http://www.schrodinger.com

19. Eriksson M.A., Roux B. Modeling the structure of agitoxin in complex with the shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles // Biophys. J. 2002. Vol. 83. N 5. P. 2595—609.

20. Tieleman D.P., Sansom M.S.P., Berendsen H.J.C. Alamethicin Helices in a Bilayer and in Solution: MolecularDynamics Simulations // Biophys. J. 1999. Vol. 76. P. 40.

21. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics // J. Molec. Graphics. 1996. Vol. 14. P. 33—38.

22. Dolinsky T.J., Czodrowski P., Li H., Nielsen J.E., Jensen J.H., Klebe G., Baker N.A. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations // Nucleic Acids Res. 2007. Vol. 35. P. W522—525.

23. Chakrapani S., Cordero-Morales J., Perozo E. A Quantitative Description of KcsA Gating II: Single-Channel Currents // J. Gen. Physiol. 2007. Vol. 130. P. 479—496.

24. LeMasurier M., Heginbotham L., Miller C. Kcsa. It’s a Potassium Channel // J. Gen. Physiol. 2001. Vol. 118. P. 303—314.

25. Grottesi A., Sansom M.S. Molecular dynamics simulations of a K+ channel blocker: Tc1 toxin from Tityus cambridgei // FEBS Lett. 2003. Vol. 535. N 1—3. P. 29—33.


Review

For citations:


Shaitan K.V., Sokolova O.S., Shaitan A.K., Kasimova M.A., Novoseletsky V.N., Kirpichnikov M.P. INFLUENCE OF INTERIONIC INTERACTIONS ON FUNCTIONAL STATE OF KV CHANNELS AND ON BLOCKER BINDING. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2012;(4):17-23. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2012-4-17-23

Views: 313


ISSN 0137-0952 (Print)