Preview

Вестник Московского университета. Серия 16. Биология

Расширенный поиск

ВЗАИМОДЕЙСТВИЕ НИТРАТА И АБК В РЕГУЛЯЦИИ РОСТА БОКОВЫХ КОРНЕЙ ZEA MAYS L.

Полный текст:

Аннотация

Скорость роста боковых корней (БК) 7—8-дневных проростков кукурузы зависит от присутствия в среде NO3−,NO2− и АБК. Экспозиция в течение 4 ч на NO3− в диапазоне концентраций 0,01—1,5 мМ увеличивает относительную скорость роста БК; в этом же диапазоне NO2− стимулирует рост БК только при 0,01 мМ. Экзогенная 10–6 М АБК ингибирует рост БК. При совместном воздействии на корни нитрата и АБК либо нитрита и АБК характер ответной ростовой реакции различается. Предлагается гипотетическая схема участия NO в регуляции роста БК.

Об авторах

Е. С. Сидоренко

Россия

науч. сотр. кафедры физиологии растений биологического факультета МГУ. Тел. 8-495-939-42-55



Е. В. Харитонашвили

Россия

канд. биол. наук, доцент кафедры физиологии растений биологического факультета МГУ. Тел. 8-495-939-42-55



Список литературы

1. Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients // New Phytologist. 2004. Vol. 162. N 2. P. 9—24.

2. Новикова Г.В., Степанченко Н.С., Носов А.В., Мошков И.Е. В начале пути: восприятие АБК и передача ее сигнала у растений // Физиол. раст. 2009. Т. 56. № 6. С. 806—823.

3. De Smet I., Zhang H., Inzй D., Beeckman T. A novel role for abscisic acid emerges from underground // Trends Plant Sci. 2006. Vol. 11. N 9. P. 434—439.

4. Zhang H., Jennings A., Barlow P., Forde B. Dual pathways for regulation of root branching by nitrate // Plant Biology. 1999. Vol. 96. N 11. P. 6529—6534.

5. Сидоренко Е.С., Харитонашвили Е.В. Нитрат-ион —сигнал для роста и развития корневой системы // Агрохимия. 2011. № 7. С. 38—43.

6. Scheible W.-R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N., Schindelasch D., Thimm O., Udvardi M.K., Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Ararabidopsis in response to nitrogen // Plant Physiol. 2004. Vol. 136. N 1. P. 2483—2499.

7. Zhang H., Forde B. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture // Science. 1998. Vol. 279. P. 407—409.

8. Castaings L., Camargo A., Pocholle D., Gaudon V., Texier Y., Boutet-Mercey S., Taconnat L., Renou J.-P., Daniel-Vedele F., Fernandez E., Meyer C., Krapp A. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis // Plant J. 2009. Vol. 57. N 3. P. 426—435.

9. Krouk G., Crawford N., Coruzzi G., Tsay Y.-F. Nitrate signaling: adaptation to fluctuating environments // Current Opinion in Plant Biology. 2010. Vol. 13. N 3. P. 1—8.

10. De Smet I., Signora L., Beeckman T., Inzй D., Foyer C.H., Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis // Plant J. 2003. Vol. 33. N 3. P. 543—555.

11. Signora L., De Smet I., Foyer C.H., Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis // Plant J. 2001. Vol. 28. N 6. P. 655—662.

12. Wang R., Tischner R., Gutierrez R.A., Hoffman M., Xing X., Chen M., Coruzzi G., Crawford N.M. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis // Plant Physiol. 2004. Vol. 136. N 1. P. 2512—2522.

13. Wang R., Xing X., Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots // Plant Physiol. 2007. Vol. 145. N 4. P. 1735—1745.

14. Vidal E.A., Gutiйrrez R.A. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis // Current Opinion in Plant Biology. 2008. Vol. 11. N 5. P. 521—529.

15. Бидл К.Л. Анализ роста растений // Фотосинтез и биопродуктивность: методы определения / Под ред. и с предисл. А.Т. Мокроносова. М.: Агропромиздат, 1989. 460 с.

16. Красиленко Ю.А., Емец А.И., Блюм Я.Б. Функциональная роль оксида азота у растений // Физиол. раст. 2010. T. 57. № 4. С. 483—494.

17. Lozano-Juste J., Leon J. Nitric oxide modulates sensitivity to ABA // Plant Signaling & Behavior. 2010. Vol. 5. N 3. P. 314—316.

18. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro // J. Experiment. Bot. 2002. Vol. 53. N 366. P. 103—110.

19. Stohr C., Stremlau S. Formation and possible roles of nitric oxide in plant roots // J. Experiment. Bot. 2006. Vol. 57. N 3. P. 463—470.

20. Lozano-Juste J., Leon J. Enhanced abscisic acidmediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1 dependent nitric oxide biosynthesis in Arabidopsis // Plant Physiol. 2010. Vol. 152. N 2. P. 891—903.

21. Desikan R., Griffiths R., Hancock J., Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana // Proc. Nat. Acad. Sci. USA. 2002.Vol. 99. N 25. P. 16314—16318.

22. Garcia-Mata C., Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress // Plant Physiol. 2001. Vol. 126. N 3. P. 1196—1204.

23. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. Nitric oxide, stomatal closure, and abiotic stress // J. Experiment. Bot. 2008. Vol. 59. P. 165—176.

24. Kasprowicz A., Szuba A., Volkmann D., Baluska F., Wojtaszek P. Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices // J. Experiment. Bot. 2009. Vol. 60. P. 1605—1617.


Для цитирования:


Сидоренко Е.С., Харитонашвили Е.В. ВЗАИМОДЕЙСТВИЕ НИТРАТА И АБК В РЕГУЛЯЦИИ РОСТА БОКОВЫХ КОРНЕЙ ZEA MAYS L. Вестник Московского университета. Серия 16. Биология. 2012;(4):34-38.

For citation:


Sidorenko E.S., Kharitonashvili E.V. NITRATE AND ABA INTERACTION IN REGULATION OF LATERAL ROOT ELONGATION IN ZEA MAYS L. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2012;(4):34-38. (In Russ.)

Просмотров: 51


ISSN 0137-0952 (Print)