Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

NITRATE AND ABA INTERACTION IN REGULATION OF LATERAL ROOT ELONGATION IN ZEA MAYS L.

https://doi.org/10.1234/XXXX-XXXX-2012-4-34-38

Abstract

Lateral root (LR) elongation rate depends on NO3−,NO2− and ABA availability in the nutrient solution. Short-term exposure on 0,01—1,5 mM KNO3 stimulates LR elongation rate; in experiments with KNO2 only 0,01 mM stimulates LR elongation rate. Exogenous 10–6 M ABA inhibites  LR growth. Simultaneous effects of NO3− and ABA or NO2− and ABA on LR elongation rate are different. Role of endogenous NO in regulation of LR elongation is discussed.

About the Authors

E. S. Sidorenko

Russian Federation


E. V. Kharitonashvili

Russian Federation


References

1. Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients // New Phytologist. 2004. Vol. 162. N 2. P. 9—24.

2. Новикова Г.В., Степанченко Н.С., Носов А.В., Мошков И.Е. В начале пути: восприятие АБК и передача ее сигнала у растений // Физиол. раст. 2009. Т. 56. № 6. С. 806—823.

3. De Smet I., Zhang H., Inzй D., Beeckman T. A novel role for abscisic acid emerges from underground // Trends Plant Sci. 2006. Vol. 11. N 9. P. 434—439.

4. Zhang H., Jennings A., Barlow P., Forde B. Dual pathways for regulation of root branching by nitrate // Plant Biology. 1999. Vol. 96. N 11. P. 6529—6534.

5. Сидоренко Е.С., Харитонашвили Е.В. Нитрат-ион —сигнал для роста и развития корневой системы // Агрохимия. 2011. № 7. С. 38—43.

6. Scheible W.-R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N., Schindelasch D., Thimm O., Udvardi M.K., Stitt M. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Ararabidopsis in response to nitrogen // Plant Physiol. 2004. Vol. 136. N 1. P. 2483—2499.

7. Zhang H., Forde B. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture // Science. 1998. Vol. 279. P. 407—409.

8. Castaings L., Camargo A., Pocholle D., Gaudon V., Texier Y., Boutet-Mercey S., Taconnat L., Renou J.-P., Daniel-Vedele F., Fernandez E., Meyer C., Krapp A. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis // Plant J. 2009. Vol. 57. N 3. P. 426—435.

9. Krouk G., Crawford N., Coruzzi G., Tsay Y.-F. Nitrate signaling: adaptation to fluctuating environments // Current Opinion in Plant Biology. 2010. Vol. 13. N 3. P. 1—8.

10. De Smet I., Signora L., Beeckman T., Inzй D., Foyer C.H., Zhang H. An abscisic acid-sensitive checkpoint in lateral root development of Arabidopsis // Plant J. 2003. Vol. 33. N 3. P. 543—555.

11. Signora L., De Smet I., Foyer C.H., Zhang H. ABA plays a central role in mediating the regulatory effects of nitrate on root branching in Arabidopsis // Plant J. 2001. Vol. 28. N 6. P. 655—662.

12. Wang R., Tischner R., Gutierrez R.A., Hoffman M., Xing X., Chen M., Coruzzi G., Crawford N.M. Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis // Plant Physiol. 2004. Vol. 136. N 1. P. 2512—2522.

13. Wang R., Xing X., Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots // Plant Physiol. 2007. Vol. 145. N 4. P. 1735—1745.

14. Vidal E.A., Gutiйrrez R.A. A systems view of nitrogen nutrient and metabolite responses in Arabidopsis // Current Opinion in Plant Biology. 2008. Vol. 11. N 5. P. 521—529.

15. Бидл К.Л. Анализ роста растений // Фотосинтез и биопродуктивность: методы определения / Под ред. и с предисл. А.Т. Мокроносова. М.: Агропромиздат, 1989. 460 с.

16. Красиленко Ю.А., Емец А.И., Блюм Я.Б. Функциональная роль оксида азота у растений // Физиол. раст. 2010. T. 57. № 4. С. 483—494.

17. Lozano-Juste J., Leon J. Nitric oxide modulates sensitivity to ABA // Plant Signaling & Behavior. 2010. Vol. 5. N 3. P. 314—316.

18. Rockel P., Strube F., Rockel A., Wildt J., Kaiser W. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro // J. Experiment. Bot. 2002. Vol. 53. N 366. P. 103—110.

19. Stohr C., Stremlau S. Formation and possible roles of nitric oxide in plant roots // J. Experiment. Bot. 2006. Vol. 57. N 3. P. 463—470.

20. Lozano-Juste J., Leon J. Enhanced abscisic acidmediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1 dependent nitric oxide biosynthesis in Arabidopsis // Plant Physiol. 2010. Vol. 152. N 2. P. 891—903.

21. Desikan R., Griffiths R., Hancock J., Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana // Proc. Nat. Acad. Sci. USA. 2002.Vol. 99. N 25. P. 16314—16318.

22. Garcia-Mata C., Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress // Plant Physiol. 2001. Vol. 126. N 3. P. 1196—1204.

23. Neill S., Barros R., Bright J., Desikan R., Hancock J., Harrison J., Morris P., Ribeiro D., Wilson I. Nitric oxide, stomatal closure, and abiotic stress // J. Experiment. Bot. 2008. Vol. 59. P. 165—176.

24. Kasprowicz A., Szuba A., Volkmann D., Baluska F., Wojtaszek P. Nitric oxide modulates dynamic actin cytoskeleton and vesicle trafficking in a cell type-specific manner in root apices // J. Experiment. Bot. 2009. Vol. 60. P. 1605—1617.


Review

For citations:


Sidorenko E.S., Kharitonashvili E.V. NITRATE AND ABA INTERACTION IN REGULATION OF LATERAL ROOT ELONGATION IN ZEA MAYS L. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2012;(4):34-38. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2012-4-34-38

Views: 235


ISSN 0137-0952 (Print)