Some peculiarities of application of denaturative and undenaturated D-FISH methods on chromosomes of cereals
Abstract
Non-denaturing fluorescent in situ hybridization (ND FISH) is a convenient method of cytogenetic research. Compared to the standard method, ND FISH is fast and easy to perform, requires less time, reagents and tools, so it is gaining increasing popularity among different groups of scientists and used to accomplish various scientific tasks. However, when using this method to visualize the chromosomes of wheat and its wild relatives, we faced some peculiarities of its application when oligonucleotide probes are used. In this paper, we compare three following methods, two different versions of the denaturation method and the denaturation FISH. In the standard procedure and its modifications, chromosomes are treated with formamide at high temperature that results in the denaturation of supercoiled DNA of plant chromosomes. In the non-denaturing FISH, this step is omitted that makes it possible to keep the native chromosome structure and, thus, is more time and cost effective. In our work, all methods demonstrated their efficiency. Non-denaturing FISH is characterized by ease and convenience, but less reproducibility in a series of experiments. The standard protocol and its modifications are most stable and reliable, but negatively affect chromosome morphology. In successive hybridizations on the same slide (sequential FISH), we recommend a combination of these methods, with primary testing using a standard protocol and subsequent hybridization using the ND-FISH method.
About the Authors
V. M. KuznetsovaRussian Federation
Laboratory of Applied Genomics and Crop Breeding All-Russia RIAB.
Timiryzevskay str. 42, Moscow, 127550; Timiryzevskay str. 49, Moscow, 127550
O. V. Razumova
Russian Federation
Laboratory of Applied Genomics and Crop Breeding All-Russia RIAB; Laboratory of Molecular Systematics N.V. Tsitsin MBG RAS.
Timiryzevskay str. 42, Moscow, 127550
G. I. Karlov
Russian Federation
Laboratory of Applied Genomics and Crop Breeding All-Russia RIAB.
Timiryzevskay str. 42, Moscow, 127550; Timiryzevskay str. 49, Moscow, 127550
T. X. Dang
Russian Federation
Timiryzevskay str. 49, Moscow, 127550
P. Y. Kroupin
Russian Federation
Laboratory of Applied Genomics and Crop Breeding All-Russia RIAB.
Timiryzevskay str. 42, Moscow, 127550; Timiryzevskay str. 49, Moscow, 127550
М. Divashuk
Russian Federation
Laboratory of Applied Genomics and Crop Breeding All-Russia RIAB.
Timiryzevskay str. 42, Moscow, 127550; Timiryzevskay str. 49, Moscow, 127550
References
1. Rosato M, Alvarez I, Nieto Feliner G., Rossello J.A. High and uneven levels of 45S rDNA site-number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae) // PLoS ONE. 2017. Vol. 12. N 10: e0187131.
2. Han F.P., Lamb J.C., Birchler J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize // Proc. Natl. Acad. Sci. U.S.A. 2006. Vol. 103. N 9. P. 3238-3243.
3. Tang Z.X., Yang Z.J., Fu S.L Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis // J. Appl. Genet. 2014. Vol. 55. N 3. P. 313-318.
4. Fu S.L., Chen L, Wang Y.Y., Li M, YangZ.J., Qiu L., Yan B.J., Ren Z.L., Tang Z.X Oligonucleotide probes for ND-D-FISH analysis to identify rye and wheat chromosomes // Sci. Rep. 2015. Vol. 5: 10552.
5. Xiao Z, Tang S, Qiu L, Tang Z, Fu S. Oligonucleotides and ND-FISH displaying different arrangements of tandem repeats and identification of Dasypyrum villosum chromosomes in wheat backgrounds // Molecules. 2017. Vol. 22. N 6: 973.
6. Badaeva E.D., Amosova A.V., Goncharov N.P., Macas J., Ruban A.S., Grechishnikova I.V., Zoshchuk S.A., Houben A. A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploidy wheat // Cytogenet. Genome Res. 2015. Vol. 146. N 1. P. 71-79.
7. Li G.R., Gao D, Zhang H.G., Li J.B., Wang H.J., La S.X., Ma J. W, YangZJ. Molecular cytogenetic characterization of Dasypyrum breviaristatum chromosomes in wheat background revealing the genomic divergence between Dasypyrum species // Mol. Cytogenet. 2016. Vol. 9. N 1: 6.
8. Du P, Zhuang L.F., Wang Y.Z., Yuan Q, Wang D.R., Dawadondup, Tan L.J., Shen J., Xu H.B., Zhao H. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes // Genome. 2017. Vol. 60. N 2. P. 93-103.
9. Puterova J., Razumova O, Martinek T, Alexandrov O, Divashuk M, Kubat Z, Hobza R, Karlov G, Kejnovsky E. Satellite DNA and transposable elements in seabuckthorn (Hippophae rhamnoides), a dioecious plant with small Y and large X chromosomes // Genome Biol. Evol. 2017. Vol. 9. N 1. P. 197-212.
10. Xin H, Zhang T, Han Y., Wu Y., Shi J., Xi M, Jiang J. Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides // Chromosoma. 2018. Vol. 127. N 3. P. 313-321.
11. Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T, Zhu W, Zhang J, Fu S. Developing new Oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH // Front. Plant Sci. 2018. Vol. 9: 1104.
12. Jiang M, Xaio Z.Q., Fu S.L., Tang ZX. FISH karyotype of 85 common wheat cultivars/ lines displayed by ND-FISH using oligonucleotide probes // Cereal Res. Commun. 2017. Vol. 45. N 4. P. 549-563.
13. Kirov I.V., Kiseleva A.V., Van Laere K., Van Roy N, Khrustaleva L.I. Tandem repeats of Allium fistulosum associated with major chromosomal landmarks // Mol. Genet. Genomics. 2017. Vol. 292. N 2. P. 453-464.
14. Alexandrov O.S., Karlov G.I. Molecular cytogenetic analysis and genomic organization of major DNA repeats in castor bean (Ricinus communis L.) // Mol. Genet. Genomics. 2016. Vol. 291. N 2. P. 775-787.
15. Komuro S, Endo R, Shikata K, and A. Kato. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure // Genome. 2013. Vol. 56. N 3. P. 131-137.
16. Kato A. High-density fluorescence in situ hybridization signal detection on barley (Hordeum vulgare L.) chromosomes with improved probe screening and reprobing procedures // Genome. 2011. Vol. 54. N 2. P. 151-159.
17. Iwata-Otsubo A., Radke B., Findley S, Abernathy B., Vallejos C.E., Jackson S.A. Fluorescence in situ hybridization (FISH)-based karyotyping reveals rapid evolution of centromeric and subtelomeric repeats in common bean (Phaseolus vulgaris) and relatives // G3: Genes, Genom., Genet. 2016. Vol. 6. N 4. P. 1013-1022.
18. Badaeva E.D., Ruban A.S. Evolution of the S-genomes in Triticum-Аegilops alliance: evidences from chromosome analysis // Front. Plant Sci. 2018. Vol. 9: 1756.
19. Badaeva E.D., Ruban A.S., Aliyeva-Schnorr L, Municio C, Hesse S, Houben A. In situ hybridization to plant chromosomes // Fluorescence in situ hybridization (FISH). Springer Protocols Handbooks / Ed. T. Liehr. Berlin, Heidelberg: Springer, 2017. Р. 477-494.
20. Lang T, Li G, Wang H, Yu Z, Chen Q, Yang E, Fu S, Tang Z, Yang Z. Physical location of tandem repeats in the wheat genome and application for chromosome identification // Planta. 2018. Vol. 249. N 3. P. 663-675.
Review
For citations:
Kuznetsova V.M., Razumova O.V., Karlov G.I., Dang T.X., Kroupin P.Y., Divashuk Some peculiarities of application of denaturative and undenaturated D-FISH methods on chromosomes of cereals. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(2):94–100. (In Russ.)