Supraventricular myocardium of the heart of the B6CBAF1 mice strain reveals genetically determined arrhythmogenic properties due to ectopic automaticity and triggered activity
Abstract
A lot of studies aimed to the investigation the mechanisms of occurrence and ways to prevent of supraventricular arrhythmias - in particular, atrial fibrillation. The origin of the atrial fibrillation in most part of cases is associated with abnormal electrophysiological properties of the pulmonary veins (PV) myocardium. The most important of characteristic of PV myocardium is highly prone to the ectopic automaticity. Moreover, no murine strains with hereditary predisposition to PVs-derived ectopy or arrhythmogenity are known to the present moment. Nevertheless, mice become more frequent objects in the heart electrophysiology studies. Thus, the aim of the present investigation was to characterize, bioelectric properties of the PV and atrial myocardium of the F1 hybrids (B6CBAF1) received by crossing C57Bl/6 and CBA strains. In ex vivo experiments the action potentials were recorded in PV and atrial multicelluar perfused preparations isolated form B6CBAF1 and control BALB/c mice heart using standard sharp microelectrodes technique. In addition, in in vivo experiments standard approach was used to receive and analyze ECG in B6CBAF1 and BALB/c mice. In 80% of experiments the PV myocardium of B6CBAF1 exhibits permanent ectopic automaticity. Spontaneous action potential (SAP) in 55% of experiments were characterized by excessive afterdepolarizations, which caused extreme repolarization delay reached 1-20 s. Besides PV, the atrial working myocardium of B6CBAF1 in 80% of cases demonstrated SAPs. Unlike B6CBAF1, both BALB/c PV and atrial myocardium were unable to generate permanent SAPs or demonstrate repolarization abnormalities in basal conditions. The in vivo ECG recording revealed no arrhythmia episodes of significant changes of ECG parameters in B6CBAF1 mice except increased heart beat frequency. It is possible that that B6CBAF1 hybrids are the first time described mouse strain with the intrinsically or probably hereditary arrhythmogenic supraventricular myocardium demonstrating an ectopic automaticity and triggered activity.
About the Authors
V. M. PotekhinaRussian Federation
Department of Human and Animal Physiology, Faculty of Biology.
Leninskye gory 1—12, Moscow, 119234
O. A. Averina
Russian Federation
Leninskye gory 1—40, Moscow, 119234
V. S. Kuzmin
Russian Federation
Department of Human and Animal Physiology, Faculty of Biology Lomonosov MSU; Department of Physiology Pirogov RNR MU.
Leninskye gory 1—12, Moscow, 119234; Ostrovitianov str. 1, Moscow, 117997
References
1. Schotten U., Verheule S., Kirchhof P., Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal // Physiol. Rev. 2011. Vol. 91. N 1. P. 256-325.
2. Chen Y.J., Chen S.A., Chang M.S., Lin C.I. Arrhythmogenic activity of cardiac muscle in pulmonary veins of the dog: Implication for the genesis of atrial fibrillation // Cardiovasc. Res. 2000. Vol. 48. N 2. P. 265-273.
3. Doisne N, Maupoil V., Cosnay P, Findlay I. Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein // Am. J. Physiol. Heart Circ. Physiol. 2009. Vol. 297. N 1. P. 102-108.
4. Chen Y.J., Chen S.A. Thoracic vein arrhythmias // Circ. J. 2007. Vol. 71. Suppl. A. P. A20-A25.
5. Chen Y.J., Chen S.A. Electrophysiology of pulmonary veins // J. Cardiovasc. Electrophysiol. 2006. Vol. 17. N 2. P. 220-224.
6. Hosoyamada Y., Ichimura K., Koizumi K., Sakai T. Structural organization of pulmonary veins in the rat lung, with special emphasis on the musculature consisting of cardiac and smooth muscles // Anat. Sci. Int. 2010. Vol. 85. N 3. P. 152-159.
7. Kuzmin V.S., Abramochkin D.V., Sukhova G.S., Ashmarin I.P. Studies of the receptor mechanisms of the effects of ADP-ribose on the rat heart // Neurochem. J. 2008. N 2. P. 23-32.
8. Boukens B.J., Rivaud M.R., Rentschler S, Coronel R. Misinterpretation of the mouse ECG: ‘musing the waves of Mus musculus’ // J. Physiol. 2014. Vol. 592. N 21. P. 4613-4626.
9. Tsuneoka Y., Kobayashi Y, Honda Y., Namekata I., Tanaka H. Electrical activity of the mouse pulmonary vein myocardium // J. Pharmacol. Sci. 2012. Vol. 119. N 3. P. 287-292.
10. Wit A.L., Boyden P.A. Triggered activity and atrial fibrillation // Heart Rhythm. 2006. Vol. 4. Suppl. 3. P. S17-S23.
11. Iwasaki Y.K., Nishida K., Kato T., Nattel S. Atrial fibrillation pathophysiology: implications for management // Circulation. 2011. Vol. 124. N 20. P. 2264-2274.
12. Barajas-Martinez H., Goodrow R.J., Hu D., Patel P., Desai M., Panama B.K., Treat J.A., Aistrup G.L., Cordeiro J.M. Biophysical and molecular comparison of sodium current in cells isolated from canine atria and pulmonary vein // Pflugers Arch. 2017. Vol. 469. N 5-6. P. 703-712.
13. Holmes A.P., Yu T.Y., Tull S., Syeda F., Kuhlmann S.M., O’Brien S.M., Patel P., Brain K.L., Pavlovic D., Brown N.A., Fabritz L., Kirchhof P. A regional reduction in Ito and IKach in the murine posterior left atrial myocardium is associated with action potential prolongation and increased ectopic activity // PLoS One. 2016. Vol. 11. N 5. e0154077.
14. Raso A., Dirkx E., Philippen L.E., et al. Therapeutic delivery of miR-148a suppresses ventricular dilation in heart failure // Mol. Ther. 2019. Vol. 27. N 3. P. 584-599.
15. Harrison D.E., Archer J.R. Genetic differences in effects of food restriction on aging in mice // J. Nutr. 1987. Vol. 117. N 2. P. 376-382.
16. Hackbarth H., Harrison D.E. Changes with age in renal function and morphology in C57BL/6, CBA/HT6, and B6CBAF1 mice // J. Gerontol. 1982. Vol. 37. N 5. P. 540-547.
17. Damaj M.I., Fonck C., Marks M.J., Deshpande P., Labarca C., Lester H.A., Collins A.C., Martin B.R. Genetic approaches identify differential roles for alpha4beta2* nicotinic receptors in acute models of antinociception in mice // J. Pharmacol. Exp. Ther. 2007. Vol. 321. N 3. P. 1161-1169.
18. Okamoto Y., Kawamura K., Nakamura Y., Ono K. Pathological impact of hyperpolarization-activated chloride current peculiar to rat pulmonary vein cardiomyocytes // J. Mol. Cell. Cardiol. 2014. Vol. 66. P. 53-62.
19. Malecot C.O., Bredeloux P., Findlay I., Maupoil V. A TTX-sensitive resting Na+ permeability contributes to the catecholaminergic automatic activity in rat pulmonary vein // J. Cardiovasc. Electrophysiol. 2015. Vol. 26. N 3. P. 311-319.
20. Xu H, Li H, Nerbonne J.M. Elimination of the transient outward current and action potential prolongation in mouse atrial myocytes expressing a dominant negative Kv4 alpha subunit // J. Physiol. 1999. Vol. 519. Pt. 1. P. 11-21.
21. Voigt N, Dobrev D. Atrial-selective potassium channel blockers // Card. Electrophysiol. Clin. 2016. Vol. 8. N 2. P. 411-421.
22. Graziani A.T., Vassalle M. Mechanisms underlying overdrive suppression and overdrive excitation in guinea pig sino-atrial node // J. Biomed. Sci. 2006 Vol. 13. N 5. P. 703-720.
Review
For citations:
Potekhina V.M., Averina O.A., Kuzmin V.S. Supraventricular myocardium of the heart of the B6CBAF1 mice strain reveals genetically determined arrhythmogenic properties due to ectopic automaticity and triggered activity. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2019;74(2):115–122. (In Russ.)