Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Diaphragm: relationship between the regulation of blood supply and the characteristics of the contractile function

Abstract

The diaphragm is a unique skeletal muscle, it is active throughout the life and therefore differs from locomotor muscles in the properties of muscle fibers and the mechanisms blood supply control. In this review, we aimed to survey the structural characteristics of diaphragm muscle tissue, which provide its integral contractile properties, to compare the activity of vascular tone control mechanisms in the diaphragm and locomotor muscles and to explore their relationship with the regulation of contractile function. The diaphragm differs from most other skeletal muscles with a high content of both slow, fatigue-resistant muscle fibers of type I and fast fibers of type IIb, which provides endurance and high speed-power characteristics of the diaphragm. The muscle fibers in the diaphragm are smaller, and the density of capillarization is much higher than in locomotor muscles. Arteries and arterioles that regulate blood supply to the diaphragm capillary bed combine the properties of arteries from muscles composed mainly of oxidative or glycolytic fibers, which provides blood flow in the diaphragm, adequate to its functional load with various patterns of activity. Compared to locomotor muscles, the mechanisms of vasoregulation in the diaphragm can qualitatively differ in the proximal and distal parts of the vascular bed. The functional properties of the proximal arteries can be explained, in particular, by their proximity to the aorta and their small length. The contractile characteristics and blood supply of the diaphragm in various conditions should be taken into account when conducting respiratory muscle training in sports and rehabilitation medicine.

About the Authors

A. A. Borzykh
Institute for Biomedical Problems, Russian Academy of Sciences
Russian Federation

Laboratory of Exercise Physiology

Khoroshevskoe shosse 76A, Moscow, 123007



O. L. Vinogradova
Institute for Biomedical Problems, Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation

Laboratory of Exercise Physiology, Khoroshevskoe shosse 76A, Moscow, 123007;

Department of Ecological and Extreme Medicine, Faculty of Basic Medicine, Lomonosovskiy prospect 27–1, Moscow, 119991



O. S. Tarasova
LInstitute for Biomedical Problems, Russian Academy of Sciences; Lomonosov Moscow State University
Russian Federation

Laboratory of Exercise Physiology, Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, Moscow, 123007;

Department of Human and Animal Physiology, Faculty of Biology, Leninskiye gory 1–12, Moscow, 119234



References

1. Fogarty M.J., Sieck G.C. Evolution and functional differentiation of the diaphragm muscle of mammals // Compr. Physiol. 2019. Vol. 9. N 2. P. 715–766.

2. Manohar M. Costal vs. crural diaphragmatic blood flow during submaximal and near-maximal exercise in ponies // J. Appl. Physiol. 1988. Vol. 65. N 4. P. 1514–1519.

3. Kirkton S.D., Howlett R.A., Gonzalez N.C., Giuliano P.G., Britton S.L., Koch L.G., Wagner H.E., Wagner P.D. Continued artificial selection for running endurance in rats is associated with improved lung function // J. Appl. Physiol. 2009. Vol. 106. N 6. P. 1810–1818.

4. Rosser-Stanford B., Backx K., Lord R., Williams E.M. Static and dynamic lung volumes in swimmers and their ventilatory response to maximal exercise // Lung. 2019. Vol. 197. N 1. P. 15–19.

5. Neder J.A., Dal Corso S., Malaguti C., Reis S., De Fuccio M.B., Schmidt H., Fuld J.P., Nery L.E. The pattern and timing of breathing during incremental exercise: A normative study // Eur. Respir. J. 2003. Vol. 21. N 3. P. 530–538.

6. Fogarty M.J., Mantilla C.B., Sieck G.C. Breathing: Motor control of diaphragm muscle // Physiology (Bethesda). 2018. Vol. 33. N 2. P. 113–126.

7. Schiaffino S., Reggiani C. Fiber types in mammalian skeletal muscles // Physiol. Rev. 2011. Vol. 91. N 4. P. 1447–1531.

8. Schiaffino S., Sandri M., Murgia M. Activitydependent signaling pathways controlling muscle diversity and plasticity // Physiology (Bethesda). 2007. Vol. 22. N 4. P. 269–278.

9. Bloemberg D., Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis // PLoS One. 2012. Vol. 7. N 4: e35273.

10. Delp M.D., Duan C. Composition and size of type I, IIA, IID/X, and IIB fibers and citrate synthase activity of rat muscle // J. Appl. Physiol. 1996. Vol. 80. N 1. P. 261–270.

11. Тарасова О.С., Каленчук В.У., Борзых А.А., Андреев-Андриевский А.А, Буравков С.В., Шарова А.П., Виноградова О.Л. Сравнение вазомоторных реакций и иннервации мелких артерий локомоторной и дыхательной мускулатуры у крыс // Биофизика. 2008. Т. 53. №. 6. С. 1095–1102.

12. Borzykh A.A., Andreev-Andrievskiy A.A., Kalenchuk V.U., Mochalov S.V., Buravkov S.V., Kuzmin I.V., Borovik A.S., Vinogradova O.L., Tarasova O.S. Strategies of adaptation of small arteries in diaphragm and gastrocnemius muscle to aerobic exercise training // Hum. Physiol. 2017. Vol. 43. N 4. P. 437–445.

13. Metzger J.M., Scheidt K.B., Fitts R.H. Histochemical and physiological characteristics of the rat diaphragm // J. Appl. Physiol. 1985. Vol. 58. N 4. P. 1085–1091.

14. Борзых А.А., Гайнуллина Д.К., Кузьмин И.В., Шарова А.П., Тарасова О.С., Виноградова О.Л. Сравнительный анализ экспрессии генов в локомоторных мышцах и диафрагме крысы // Рос. физиол. журн. им. И.М. Сеченова. 2012. Т. 98. № 12. С. 1587–1594.

15. Uribe J.M., Stump C.S., Tipton C.M., Fregosi R.F. Influence of exercise training on the oxidative capacity of rat abdominal muscles // Respir. Physiol. 1992. Vol. 88. N 1–2. P. 171–180.

16. Metzger J.M., Fitts R.H. Contractile and biochemical properties of diaphragm: effects of exercise training and fatigue // J. Appl. Physiol. 1986. Vol. 60. N 5. P. 1752–1758.

17. Popov D.V. Adaptation of skeletal muscles to contractile activity of varying duration and intensity: the role of PGC-1α // Biochemistry (Moscow). 2018. Vol. 83. N 6. P. 613–628.

18. Suzuki J. Microvascular remodelling after endurance training with Co 2+ treatment in the rat diaphragm and hindleg muscles // Jpn. J. Physiol. 2002. Vol. 52. N 5. P. 409–419.

19. Gute D., Fraga C., Laughlin M.H., Amann J.F. Regional changes in capillary supply in skeletal muscle of high-intensity endurance-trained rats // J. Appl. Physiol. 1996. Vol. 81. N 2. P. 619–626.

20. Green H.J., Plyley M.J., Smith D.M., Kile J.G. Extreme endurance training and fiber type adaptation in rat diaphragm // J. Appl. Physiol. 1989. Vol. 66. N 4. P. 1914–1920.

21. Gosselin L.E., Betlach M., Vailas A.C., Thomas D.P. Training-induced alterations in young and senescent rat diaphragm muscle // J. Appl. Physiol. 1992. Vol. 72. N 4. P. 1506–1511.

22. Domínguez-Álvarez M., Gea J., Barreiro E. Inflammatory events and oxidant production in the diaphragm, gastrocnemius, and blood of rats exposed to chronic intermittent hypoxia: therapeutic strategies // J. Cell. Physiol. 2017. Vol. 232. N 5. P. 1165–1175.

23. Armstrong R.B., Laughlin M.H. Metabolic indicators of fibre recruitment in mammalian muscles during locomotion // J. Exp. Biol. 1985. Vol. 115. P. 201–213.

24. Joyner M.J., Casey D.P. Regulation of increased blood flow (Hyperemia) to muscles during exercise: A hierarchy of competing physiological needs // Physiol. Rev. 2015. Vol. 95. N 2. P. 549–601.

25. Murrant C.L., Sarelius I.H. Local control of blood flow during active hyperaemia: What kinds of integration are important? // J. Physiol. 2015. Vol. 593. N 21. P. 4699–4711.

26. Sexton W.L., Poole D.C. Costal diaphragm blood flow heterogeneity at rest and during exercise // Respir. Physiol. 1995. Vol. 101. N 2. P. 171–182.

27. Laughlin M.H., Armstrong R.B. Rat muscle blood flows as a function of time during prolonged slow treadmill exercise // Am. J. Physiol. 1983. Vol. 244. N 6. P. H814–824.

28. Sarelius I., Pohl U. Control of muscle blood flow during exercise: local factors and integrative mechanisms // Acta Physiol. (Oxf.). 2010. Vol. 199. N 4. P. 349–365.

29. Bagher P., Segal S.S. Regulation of blood flow in the microcirculation: Role of conducted vasodilation // Acta Physiologica. 2011. Vol. 202. N 3. P. 271–284.

30. Мелькумянц А.М. О роли эндотелиального гликокаликса в механогенной регуляции сопротивления артериальных сосудов // Успехи физиол. наук. 2012. Т. 43. № 4. С. 45–58.

31. Fixler D.E., Atkins J.M., Mitchell J.H., Horwitz L.D. Blood flow to respiratory, cardiac, and limb muscles in dogs during graded exercise // Am. J. Physiol. 1976. Vol. 231. N 5. P. 1515–1519.

32. Manohar M. Inspiratory and expiratory muscle perfusion in maximally exercised ponies // J. Appl. Physiol. 1990. Vol. 68. N 2. P. 544–548.

33. Nobrega A.C.L., O’Leary D., Silva B.M., Marongiu E., Piepoli M.F., Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents // Biomed Res. Int. 2014. Vol. 2014. P. 478965.

34. O’Leary D.S., Robinson E.D., Butler J.L. Is active skeletal muscle functionally vasoconstricted during dynamic exercise in conscious dogs? // Am. J. Physiol. 1997. Vol. 272. N 1. P. R386–R391.

35. Manohar M. Vasodilator reserve in respiratory muscles during maximal exertion in ponies // J. Appl. Physiol (1985). 1986. Vol. 60. N 5. P. 1571–1577.

36. Sheel A.W., Boushel R., Dempsey J.A. Competition for blood flow distribution between respiratory and locomotor muscles: Implications for muscle fatigue // J. Appl. Physiol. 2018. Vol. 125. N 3. P. 820–831.

37. Dempsey J.A., Romer L., Rodman J., Miller J., Smith C. Consequences of exercise-induced respiratory muscle work // Respir. Physiol. Neurobiol. 2006. Vol. 151. N 2–3. P. 242–250.

38. Laughlin M.H., Armstrong R.B. Adrenoreceptor effects on rat muscle blood flow during treadmill exercise // J. Appl. Physiol. 1987. Vol. 62. N 4. P. 1465–1472.

39. Behnke B.J., Armstrong R.B., Delp M.D. Adrenergic control of vascular resistance varies in muscles composed of different fiber types: Influence of the vascular endothelium // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. Vol. 301. N 3. P. R783–R790.

40. Hilton S.M., Jeffries M.G., Vrbová G. Functional specializations of the vascular bed of soleus // J. Physiol. 1970. Vol. 206. N 3. P. 543–562.

41. Aaker A., Laughlin M.H. Diaphragm arterioles are less responsive to alpha1-adrenergic constriction than gastrocnemius arterioles // J. Appl. Physiol. 2002. Vol. 92. N 5. P. 1808–1816.

42. Laughlin M.H., Woodman C.R., Schrage W.G., Gute D., Price E.M. Interval sprint training enhances endothelial function and eNOS content in some arteries that perfuse white gastrocnemius muscle // J. Appl. Physiol. 2004. Vol. 96. N 1. P. 233–244.

43. Van Teeffelen J.W.G.E., Segal S.S. Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle // J Physiol. 2003. Vol. 550. N. 2. P. 563–574.

44. McCurdy M.R., Colleran P.N., Muller-Delp J., Delp M.D. Effects of fiber composition and hindlimb unloading on the vasodilator properties of skeletal muscle arterioles // J. Appl. Physiol. 2000. Vol. 89. N 1. P. 398–405.

45. Schwartz L.M., McKenzie J.E. Adenosine and active hyperemia in soleus and gracilis muscle of cats // Am. J. Physiol. 1990. Vol. 259. N 4. P. H1295–H1304.

46. Muller-Delp J.M., Spier S.A., Ramsey M.W., Delp M.D. Aging impairs endothelium-dependent vasodilation in rat skeletal muscle arterioles // Am. J. Physiol. Heart Circ. Physiol. 2002. Vol. 283. N 4. P. H1662–H1672.

47. Aaker A., Laughlin M.H. Differential adenosine sensitivity of diaphragm and skeletal muscle arterioles // J. Appl. Physiol. 2002. Vol. 93. N 3. P. 848–856.

48. Гайнуллина Д.К., Кирюхина О.О., Тарасова О.С. Оксид азота в эндотелии сосудов: регуляция продукции и механизмы действия // Успехи физиол. наук. 2013. Т. 44. № 4. С. 88–102.

49. McAllister R.M. Endothelium-dependent vasodilation in different rat hindlimb skeletal muscles // J. Appl. Physiol. 2003. Vol. 94. N 5. P. 1777–1784.

50. Copp S.W., Holdsworth C.T., Ferguson S.K., Hirai D.M., Poole D.C., Musch T.I. Muscle fibre-type dependence of neuronal nitric oxide synthase-mediated vascular control in the rat during high speed treadmill running // J. Physiol. 2013. Vol. 591. N 11. P. 2885–2896.

51. Shipley R.D., Kim S.J., Muller-Delp J.M. Time course of flow-induced vasodilation in skeletal muscle: contributions of dilator and constrictor mechanisms // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 288. N 4. P. H1499–H1507.

52. Александрова Н.П., Баранов В.М., Тихонов М.А., Колесников В.И., Котов А.Н., Кочанов В.С. Влияние антиортостатической гипокинезии на функциональное состояние диафрагмы у крыс // Рос. физиол. журн. им. И.М. Сеченова. 2005. Vol. 91. N 11. P. 1312–1319.

53. Neder J.A., Marillier M., Bernard A., Matthew J.D., Kathryn M.M., O’Donnell D.E. The integrative physiology of exercise training in patients with COPD // COPD: 2019. Vol. 16. N 2. P. 182–195.

54. Illi S.K. Held U., Frank I., Spengler C.M. Effect of respiratory muscle training on exercise performance in healthy individuals: A systematic review and metaanalysis // Sports Med. 2012. Vol. 42. N 8. P. 707–724.


Review

For citations:


Borzykh A.A., Vinogradova O.L., Tarasova O.S. Diaphragm: relationship between the regulation of blood supply and the characteristics of the contractile function. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2020;75(2):55-64. (In Russ.)

Views: 893


ISSN 0137-0952 (Print)