Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

GENERATION OF ELECTRIC POTENTIAL DIFFERENCE ACROSS THE ELECTRODES OF THE MICROBIAL FUEL CELL IN THE ANAEROBIC OXIDATION OF SUBSTRATES BY MICROBIAL ASSOCIATIONS

https://doi.org/10.1234/XXXX-XXXX-2014-3-24-29

Abstract

From natural and anthropogenic sources several microbial associations were obtained. All of associations, grow well on glucose and significantly worse on acetate. It is observed 80—95% glucose consumption during 3—5 days growth. The substrates oxidation by cultures generates an electric potential difference between the anode and cathode electrodes of the microbial fuel cell (MFE). The value of the potential difference depends on the nature of the association and the substrate and reaches 400—500 mV. Potential difference generation accompanied by a shift in the negative region of the medium redox potential (Eh) to –(300—400) mV. This indicates H2 evolution by association cultures during carbohydrates oxidation. Artificial redox mediators such as tetramethyl-p-phenilen-diamine, phenasine methosulphate and benzyl viologen able to increase up to 15% difference in electrical potential across the electrodes MFE. It is ssumed that the increase in the potential difference across the electrodes, induced redox mediators due to their direct involvement in the transfer of electrons from the bacteria in the incubation medium into MFE anode electrode. Direct measurement of current and potential difference on electrodes in a mode of “short circuit” shows that the internal resistance of MFE is equal to 1 Kohm, and power reaches 5 microwatt. Undoubtedly it testifies to the low efficiency developed by MFE.

About the Authors

E. L. Barsky

Russian Federation


G. A. Dolnikova

Russian Federation


Ya. V. Savanina

Russian Federation


E. S. Lobakova

Russian Federation


References

1. Angenent L.T., Karim K., AL-Dahhan M.H., Wrenn B.A., Domiguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater // Trends Biotechnol. 2004. Vol. 22. N 8. P. 477—486.

2. Phaem C.A., Jung S.J., Phung N.T., Lee J., Chang I.C., Kim B.H., Yi H., Chan J. FEMS Microbiol. Lett. 2003. Vol. 223. P. 129—134.

3. Rabaey K., Lissens G., Siciliano S.D., Verstraete W. A microbial fuel cells capable of converting glucose to electricity and high rate and efficiency // Biotechnol. Lett. 2003. Vol. 25. P. 1531—1535.

4. Kim J.R., Jung S.H., Regan J.M., Elogan B. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells // Bioresource technol. 2007. Vol. 98. P. 2568—2577.

5. Fedorovich V.S., Knighton M.C., Pagaling E., Ward B., Free A., Goryanin I. Novel electrochemically active bacterium phylogenetically related to Arcobacter butzleri, isolated from a microbial fuel cell // Appl. Environ. Microbiol. 2009. Vol. 75. N 23. P. 7326—7334.

6. Torres C.I., Marcus A.K., Rittmann B.E. Kinetics of consumption of fermentation products by anode-respiring bacteria // Appl. Microbiol. Biotechnol. 2007. Dol 10. 1007 / s 00253-007-1198-x.

7. Roden E.E., Kappler A., Bauer I., Jiang J., Paul A., Stoesser R., Konishi H., Xu H. Extracellular electron transfer through microbial reduction of solid phase humic subsaces // Nature geoscience. 2010. Vol. 3. P. 417—421.

8. Park D.H., Zeikus G. Electricity generation in microlial fuel cells using neutral red as an electronophore // Appl. Environ. Microbiol. 2000. Vol. 66. N 4. P. 1292—1297.

9. Haipham T., Boon N., Alterman P., Clauwaert P., Schamphelaire De L. Metabolited produced by Pseudomonas sp. enable Gram-positive bacterium to achieve extracellular lectron transfe // Appl. Microbiol. Biotechnol. 2008. Vol. 77. P. 1119—1129.

10. Barsky E.L., Dol’nikova G.A., Savanina Ya.V., Belousova E.E., Karpova E.Yu., Dedov A.G., Lobakova E.S. Conversion of stillage carbohydrates by associations of microorganisms immobilized on polymer matrices // Mos. Univ. Biol. Sci. Bull. 2013. Vol. 68. Iss. 3. P. 124—130.

11. Методы химии углеводов / Под ред. Н.К. Кочеткова. М., 1967. 512 с.

12. Пиневич А.В. Биология прокариот. Т. 2. СПб.: Изд. СПб ун-та, 2007. 329 с.

13. Барский Е.Л., Лебедева А.Ф., Саванина Я.В. Изменения окислительно-восстановительного потенциала среды культивирования устойчивой к тяжелым металлам бактерии Pseudomonas diminuta: взаимосвязь с выделением из клеток металлотионеиноподобных белков // Вестн. Моск. ун-та. Сер. 16. Биология. 1999. № 2. С. 11—15.

14. Лебедева А.Ф., Саванина Я.В., Барский Е.Л. Изменения редокс-потенциала и содержания углеводов в среде при периодическом и диализном культивировании цианобактерии Anacystis nidulans и бактерии Pseudomonas diminuta // Вестн. Моск. ун-та. 2002. Сер. 16. Биология. № 2. С. 24—29.


Review

For citations:


Barsky E.L., Dolnikova G.A., Savanina Ya.V., Lobakova E.S. GENERATION OF ELECTRIC POTENTIAL DIFFERENCE ACROSS THE ELECTRODES OF THE MICROBIAL FUEL CELL IN THE ANAEROBIC OXIDATION OF SUBSTRATES BY MICROBIAL ASSOCIATIONS. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2014;(3):24-29. (In Russ.) https://doi.org/10.1234/XXXX-XXXX-2014-3-24-29

Views: 357


ISSN 0137-0952 (Print)