Preview

Vestnik Moskovskogo universiteta. Seriya 16. Biologiya

Advanced search

Growth of mesenchymal stem cells on oriented microstructured films and electrospun scaffolds

https://doi.org/10.55959/MSU0137-0952-16-78-3S-6

Abstract

The study involved the fabrication of films with different roughness and scaffolds made of poly(3-hydroxybutyrate) using various methods. Chaotic and oriented scaffolds with varying fiber thickness were obtained through the electrospinning method, depending on the polymer concentration and electrospinning parameters. Films with different surface roughness were obtained using spin coating and self-assembly methods. It was demonstrated that the varying microstructure of the surface does not affect the growth of mesenchymal stem cells over the course of a week; however, it does influence the morphology of the adhered cells.

About the Authors

I. V. Demianova
Shenzhen MSU-BIT University
China

1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, 518172, Guangdong Province



E. A. Akoulina
Shenzhen MSU-BIT University, 1 International University Park Road; Lomonosov Moscow State University
Russian Federation

Faculty of Biology

Dayun New Town, Longgang District, Shenzhen, 518172, Guangdong Province

1–12 Leninskie Gory, 119234 Moscow



I. I. Zharkov
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



V. V. Voinova
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



D. V. Chesnokova
Lomonosov Moscow State University,
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



A. M. Hossain
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



T. K. Makhina
Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Science
Russian Federation

33–2 Leninsky Prospect, 119071, Moscow



G. A. Bonartseva
Federal Research Centre “Fundamentals of Biotechnology,” Russian Academy of Science
Russian Federation

33–2 Leninsky Prospect, 119071, Moscow



V. I. Kulikouskaya
Institute of Chemistry of New Materials, National Academy of Sciences of Belarus
Belarus

36 Skariny st., 220141, Minsk



V. V. Nikolaichuk
Institute of Chemistry of New Materials, National Academy of Sciences of Belarus
Belarus

36 Skariny st., 220141, Minsk



Yu. R. Mukhortova
Physical Materials Science and Composite Materials Research Centre
Russian Federation

43A Prospect Lenina, 634050, Tomsk



A. S. Pryadko
Physical Materials Science and Composite Materials Research Centre
Russian Federation

43A Prospect Lenina, 634050, Tomsk



M. A. Surmeneva
Physical Materials Science and Composite Materials Research Centre; 6Piezo- and Magnetoelectric Materials Research Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University
Russian Federation

43A Prospect Lenina, 634050, Tomsk



R. A. Surmenev
Physical Materials Science and Composite Materials Research Centre; 6Piezo- and Magnetoelectric Materials Research Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University
Russian Federation

43A Prospect Lenina, 634050, Tomsk



K. V. Shaitan
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



A. P. Bonartse
Lomonosov Moscow State University
Russian Federation

Faculty of Biology

1–12 Leninskie Gory, 119234 Moscow



References

1. Werner M., Blanquer S.B.G., Haimi S., Korus G., Dunlop J.W.C., Duda G.N., Grijpma D.W., Petersen A. Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv. Sci. 2017;4(2):1600347.

2. Van der Flier L.G., Clevers H. Stem cells, selfrenewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 2009;71:241–260.

3. Prittinen J., Zhou X., Bano F., Backman L., Danielson P. Microstructured collagen films for 3D corneal stroma modelling. Connect. Tissue Res. 2022;63(5):443–452.

4. Kim E.J., Boehm C.A., Mata A., Fleischman A.J., Muschler G.F., Roy S. Post microtextures accelerate cell proliferation and osteogenesis. Acta Biomater. 2010;6(1):160–169.

5. Koh L.B., Rodriguez I., Venkataraman S.S. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials. 2010;31(7):1533–1545.

6. Li L., Chen C., Li J., Zhang A., Liu X., Xu B., Gao S., Jin G., Ma Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009;19(18):2789–2796.

7. Norrman K., Ghanbari-Siahkali A., Larsen N.B. 6 Studies of spin-coated polymer films. Annu. Rep. Prog. Chem., Sect. C: Phys. Chem. 2005;101:174–201.

8. Dong W., Zhou Y., Yan D., Mai Y., He L., Jin C. Honeycomb-structured microporous films made from hyperbranched polymers by the breath figure method. Langmuir. 2009;25(1):173–178.

9. Tokaruk W.A., Molteno T.C.A., Morris S.W. Bénard-Marangoni convection in two-layered liquids. Phys. Rev. Lett. 2000;84(16):3590–3593.

10. Wong K.H., Hernández-Guerrero M., Granville A.M., Davis T.P., Barner-Kowollik C., Stenzel M.H. Water-assisted formation of honeycomb structured porous films. J. Porous Mater. 2006;13(3):213–223.

11. Bondartsev A.P., Bonartseva G.A., Reshetov I.V., Shaitan K.V., Kirpichnikov M.P. Application of polyhydroxyalkanoates in medicine and the biological activity of natural poly(3-hydroxybutyrate). Acta Naturae. 2019;11(2):4–16.

12. Sunami H., Ito E., Tanaka M., Yamamoto S., Shimomura M. Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloids Surf. A Physicochem. Eng. Asp. 2006;284–285:548–551.

13. Xue J., Wu T., Dai Y., Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019;119(8):5298–5415.

14. Demina T.S., Bolbasov E.N., Peshkova M.A., Efremov Y.M., Bikmulina P.Y., Birdibekova A.V., Popyrina T.N., Kosheleva N.V., Tverdokhlebov S.I., Timashev P.S., Akopova T.A. Electrospinning vs. electro-assisted solution blow spinning for fabrication of fibrous scaffolds for tissue engineering. Polymers. 2022;14(23):5254.

15. Bonartsev A.P., Zharkova I.I., Voinova V.V., Kuznetsova E.S., Zhuikov V.A., Makhina T.K., Myshkina V.L., Potashnikova D.M., Chesnokova D.V., Khaydapova D.D., Bonartseva G.A., Shaitan K.V. Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech. 2018;8(8):328.

16. Pryadko A.S., Mukhortova Y.R., Chernozem R.V., et al. Electrospun magnetic composite poly-3-hydroxybutyrate/magnetite scaffolds for biomedical applications: Composition, structure, magnetic properties, and biological performance. ACS Appl. Bio Mater. 2022;5(8):3999–4019.

17. Kulikouskaya V.I., Nikalaichuk V.V., Bonartsev A.P., Akoulina E.A., Belishev N.V., Demianova I.V., Chesnokova D.V., Makhina T.K., Bonartseva G.A., Shaitan K.V., Hileuskaya K.S., Voinova V.V. Honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Physicochemical characterization and mesenchymal stem cells behavior. Polymers (Basel). 2022;14(13):2671.

18. Stalder A. F., Kulik G., Sage D., Barbieri L., Hoffmann P. A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A Physicochem. Eng. Asp. 2006;286(1–3):92–103.

19. Yusop N., Battersby P., Alraies A., Sloan A.J., Moseley R., Waddington R.J. Isolation and characterisation of mesenchymal stem cells from rat bone marrow and the endosteal niche: A comparative study. Stem Cells Int. 2018;2018:6869128.

20. Kumar P., Nagarajan A., Uchil P.D. Analysis of cell viability by the MTT assay. Cold Spring Harb. Protoc. 2018;2018(6):469–472.

21. Özen A., Gül Sancak İ., Tiryaki M., Ceylan A., Alparslan Pınarlı F., Delibaşı T. Mesenchymal stem cells (Mscs) in scanning electron microscopy (SEM) world. Niche. 2013;2:22–24.

22. Furukawa T., Sato H., Murakami R., Zhang J., Noda I., Ochiai S., Ozaki Y. Raman microspectroscopy study of structure, dispersibility, and crystallinity of poly (hydroxybutyrate)/poly (l-lactic acid) blends. Polymer. 2006;47(9):3132–3140.

23. Furukawa T., Sato H., Murakami R., Zhang J., Duan Y.X., Noda I., Shukichi O., Ozaki Y. Structure, dispersibility, and crystallinity of poly(hydroxybutyrate)/poly(l-lactic acid) blends studied by FT-IR microspectroscopy and differential scanning calorimetry. Macromolecules. 2005;38(15):6445–6454.


Review

For citations:


Demianova I.V., Akoulina E.A., Zharkov I.I., Voinova V.V., Chesnokova D.V., Hossain A.M., Makhina T.K., Bonartseva G.A., Kulikouskaya V.I., Nikolaichuk V.V., Mukhortova Yu.R., Pryadko A.S., Surmeneva M.A., Surmenev R.A., Shaitan K.V., Bonartse A.P. Growth of mesenchymal stem cells on oriented microstructured films and electrospun scaffolds. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2023;78(3S):33-39. (In Russ.) https://doi.org/10.55959/MSU0137-0952-16-78-3S-6

Views: 139


ISSN 0137-0952 (Print)